Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp2lem5 Structured version   Visualization version   GIF version

Theorem lindslinindsimp2lem5 42576
 Description: Lemma 5 for lindslinindsimp2 42577. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
Assertion
Ref Expression
lindslinindsimp2lem5 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑦   𝑓,𝑀,𝑔,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑔,𝑥,𝑦   𝑔,𝑉,𝑦   𝑓,𝑍,𝑔,𝑦   0 ,𝑓,𝑔,𝑥,𝑦   𝑅,𝑔,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindsimp2lem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . . 3 ((𝑓𝑥) = 0 → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))
212a1d 26 . 2 ((𝑓𝑥) = 0 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))))
3 elmapi 7921 . . . . . . . . . 10 (𝑓 ∈ (𝐵𝑚 𝑆) → 𝑓:𝑆𝐵)
4 ffvelrn 6397 . . . . . . . . . . . . . 14 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
54expcom 450 . . . . . . . . . . . . 13 (𝑥𝑆 → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
65adantl 481 . . . . . . . . . . . 12 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
76adantl 481 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
87com12 32 . . . . . . . . . 10 (𝑓:𝑆𝐵 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
93, 8syl 17 . . . . . . . . 9 (𝑓 ∈ (𝐵𝑚 𝑆) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
109adantr 480 . . . . . . . 8 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
1110impcom 445 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) ∈ 𝐵)
1211biantrurd 528 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((𝑓𝑥) ≠ 0 ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ≠ 0 )))
13 df-ne 2824 . . . . . . 7 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0 )
1413bicomi 214 . . . . . 6 (¬ (𝑓𝑥) = 0 ↔ (𝑓𝑥) ≠ 0 )
15 eldifsn 4350 . . . . . 6 ((𝑓𝑥) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ≠ 0 ))
1612, 14, 153bitr4g 303 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (𝑓𝑥) = 0 ↔ (𝑓𝑥) ∈ (𝐵 ∖ { 0 })))
17 lindslinind.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
1817lmodfgrp 18920 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
1918adantl 481 . . . . . . . . 9 ((𝑆𝑉𝑀 ∈ LMod) → 𝑅 ∈ Grp)
2019adantr 480 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑅 ∈ Grp)
2120adantr 480 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑅 ∈ Grp)
22 lindslinind.b . . . . . . . 8 𝐵 = (Base‘𝑅)
23 lindslinind.0 . . . . . . . 8 0 = (0g𝑅)
24 eqid 2651 . . . . . . . 8 (invg𝑅) = (invg𝑅)
2522, 23, 24grpinvnzcl 17534 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝑓𝑥) ∈ (𝐵 ∖ { 0 })) → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }))
2621, 25sylan 487 . . . . . 6 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) ∧ (𝑓𝑥) ∈ (𝐵 ∖ { 0 })) → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }))
2726ex 449 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((𝑓𝑥) ∈ (𝐵 ∖ { 0 }) → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 })))
2816, 27sylbid 230 . . . 4 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (𝑓𝑥) = 0 → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 })))
29 oveq1 6697 . . . . . . . . . . 11 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → (𝑦( ·𝑠𝑀)𝑥) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
3029eqeq1d 2653 . . . . . . . . . 10 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → ((𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
3130notbid 307 . . . . . . . . 9 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → (¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
3231orbi2d 738 . . . . . . . 8 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → ((¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
3332ralbidv 3015 . . . . . . 7 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → (∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) ↔ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
3433rspcva 3338 . . . . . 6 ((((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
35 simpl 472 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆𝑉𝑀 ∈ LMod))
3635adantr 480 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑆𝑉𝑀 ∈ LMod))
37 simplrl 817 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑆 ⊆ (Base‘𝑀))
38 simplrr 818 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑥𝑆)
39 simpl 472 . . . . . . . . 9 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → 𝑓 ∈ (𝐵𝑚 𝑆))
4039adantl 481 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑓 ∈ (𝐵𝑚 𝑆))
41 lindslinind.z . . . . . . . . 9 𝑍 = (0g𝑀)
42 eqid 2651 . . . . . . . . 9 ((invg𝑅)‘(𝑓𝑥)) = ((invg𝑅)‘(𝑓𝑥))
43 eqid 2651 . . . . . . . . 9 (𝑓 ↾ (𝑆 ∖ {𝑥})) = (𝑓 ↾ (𝑆 ∖ {𝑥}))
4417, 22, 23, 41, 42, 43lindslinindimp2lem2 42573 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵𝑚 𝑆))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})))
4536, 37, 38, 40, 44syl13anc 1368 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})))
46 id 22 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → 𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})))
4723a1i 11 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → 0 = (0g𝑅))
4846, 47breq12d 4698 . . . . . . . . . . . . 13 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (𝑔 finSupp 0 ↔ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅)))
4948notbid 307 . . . . . . . . . . . 12 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (¬ 𝑔 finSupp 0 ↔ ¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅)))
50 oveq1 6697 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})))
5150eqeq2d 2661 . . . . . . . . . . . . 13 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → ((((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
5251notbid 307 . . . . . . . . . . . 12 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
5349, 52orbi12d 746 . . . . . . . . . . 11 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → ((¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) ↔ (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
5453rspcva 3338 . . . . . . . . . 10 (((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})) ∧ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
5523breq2i 4693 . . . . . . . . . . . . . . . . . 18 (𝑓 finSupp 0𝑓 finSupp (0g𝑅))
5655biimpi 206 . . . . . . . . . . . . . . . . 17 (𝑓 finSupp 0𝑓 finSupp (0g𝑅))
5756adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → 𝑓 finSupp (0g𝑅))
5857adantl 481 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → 𝑓 finSupp (0g𝑅))
5958adantl 481 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑓 finSupp (0g𝑅))
60 fvexd 6241 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (0g𝑅) ∈ V)
6159, 60fsuppres 8341 . . . . . . . . . . . . 13 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅))
6261pm2.24d 147 . . . . . . . . . . . 12 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) → (𝑓𝑥) = 0 ))
6362com12 32 . . . . . . . . . . 11 (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
64 simplr 807 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑀 ∈ LMod)
6564adantr 480 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑀 ∈ LMod)
6617fveq2i 6232 . . . . . . . . . . . . . . . . . 18 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
6722, 66eqtr2i 2674 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑀)) = 𝐵
6867oveq1i 6700 . . . . . . . . . . . . . . . 16 ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥})) = (𝐵𝑚 (𝑆 ∖ {𝑥}))
6945, 68syl6eleqr 2741 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥})))
70 ssdifss 3774 . . . . . . . . . . . . . . . . . . 19 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
7170adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
7271adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
73 difexg 4841 . . . . . . . . . . . . . . . . . . . 20 (𝑆𝑉 → (𝑆 ∖ {𝑥}) ∈ V)
7473adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 ∖ {𝑥}) ∈ V)
7574adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ V)
76 elpwg 4199 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∖ {𝑥}) ∈ V → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
7775, 76syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
7872, 77mpbird 247 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
7978adantr 480 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
80 lincval 42523 . . . . . . . . . . . . . . 15 ((𝑀 ∈ LMod ∧ (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧))))
8165, 69, 79, 80syl3anc 1366 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧))))
82 fvres 6245 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧) = (𝑓𝑧))
8382adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) ∧ 𝑧 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧) = (𝑓𝑧))
8483oveq1d 6705 . . . . . . . . . . . . . . . 16 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) ∧ 𝑧 ∈ (𝑆 ∖ {𝑥})) → (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧) = ((𝑓𝑧)( ·𝑠𝑀)𝑧))
8584mpteq2dva 4777 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧)) = (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧)))
8685oveq2d 6706 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧))))
87 simplr 807 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
88 3anass 1059 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)))
8988bicomi 214 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) ↔ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
9089biimpi 206 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
9190adantl 481 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
9217, 22, 23, 41, 42, 43lindslinindimp2lem4 42575 . . . . . . . . . . . . . . 15 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧))) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
9336, 87, 91, 92syl3anc 1366 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧))) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
9481, 86, 933eqtrrd 2690 . . . . . . . . . . . . 13 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})))
9594pm2.24d 147 . . . . . . . . . . . 12 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑓𝑥) = 0 ))
9695com12 32 . . . . . . . . . . 11 (¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
9763, 96jaoi 393 . . . . . . . . . 10 ((¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
9854, 97syl 17 . . . . . . . . 9 (((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})) ∧ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
9998ex 449 . . . . . . . 8 ((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})) → (∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 )))
10099com23 86 . . . . . . 7 ((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
10145, 100mpcom 38 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))
10234, 101syl5 34 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → (𝑓𝑥) = 0 ))
103102expd 451 . . . 4 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
10428, 103syldc 48 . . 3 (¬ (𝑓𝑥) = 0 → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
105104expd 451 . 2 (¬ (𝑓𝑥) = 0 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))))
1062, 105pm2.61i 176 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  Vcvv 3231   ∖ cdif 3604   ⊆ wss 3607  𝒫 cpw 4191  {csn 4210   class class class wbr 4685   ↦ cmpt 4762   ↾ cres 5145  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899   finSupp cfsupp 8316  Basecbs 15904  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147   Σg cgsu 16148  Grpcgrp 17469  invgcminusg 17470  LModclmod 18911   linC clinc 42518 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-linc 42520 This theorem is referenced by:  lindslinindsimp2  42577
 Copyright terms: Public domain W3C validator