MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfmm Structured version   Visualization version   GIF version

Theorem lindfmm 20360
Description: Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lindfmm.b 𝐵 = (Base‘𝑆)
lindfmm.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lindfmm ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))

Proof of Theorem lindfmm
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 20341 . . . . 5 Rel LIndF
21brrelexi 5307 . . . 4 (𝐹 LIndF 𝑆𝐹 ∈ V)
3 simp3 1132 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
4 dmfex 7281 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐼𝐵) → 𝐼 ∈ V)
52, 3, 4syl2anr 496 . . 3 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) ∧ 𝐹 LIndF 𝑆) → 𝐼 ∈ V)
65ex 449 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆𝐼 ∈ V))
71brrelexi 5307 . . . 4 ((𝐺𝐹) LIndF 𝑇 → (𝐺𝐹) ∈ V)
8 f1f 6254 . . . . . 6 (𝐺:𝐵1-1𝐶𝐺:𝐵𝐶)
9 fco 6211 . . . . . 6 ((𝐺:𝐵𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
108, 9sylan 489 . . . . 5 ((𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
11103adant1 1124 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
12 dmfex 7281 . . . 4 (((𝐺𝐹) ∈ V ∧ (𝐺𝐹):𝐼𝐶) → 𝐼 ∈ V)
137, 11, 12syl2anr 496 . . 3 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → 𝐼 ∈ V)
1413ex 449 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → ((𝐺𝐹) LIndF 𝑇𝐼 ∈ V))
15 eldifi 3867 . . . . . . . . 9 (𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) → 𝑘 ∈ (Base‘(Scalar‘𝑆)))
16 simpllr 817 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺:𝐵1-1𝐶)
17 lmhmlmod1 19227 . . . . . . . . . . . . . . 15 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
1817ad3antrrr 768 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑆 ∈ LMod)
19 simprr 813 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑘 ∈ (Base‘(Scalar‘𝑆)))
20 simprl 811 . . . . . . . . . . . . . . 15 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐹:𝐼𝐵)
21 simpl 474 . . . . . . . . . . . . . . 15 ((𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆))) → 𝑥𝐼)
22 ffvelrn 6512 . . . . . . . . . . . . . . 15 ((𝐹:𝐼𝐵𝑥𝐼) → (𝐹𝑥) ∈ 𝐵)
2320, 21, 22syl2an 495 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹𝑥) ∈ 𝐵)
24 lindfmm.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑆)
25 eqid 2752 . . . . . . . . . . . . . . 15 (Scalar‘𝑆) = (Scalar‘𝑆)
26 eqid 2752 . . . . . . . . . . . . . . 15 ( ·𝑠𝑆) = ( ·𝑠𝑆)
27 eqid 2752 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
2824, 25, 26, 27lmodvscl 19074 . . . . . . . . . . . . . 14 ((𝑆 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑥) ∈ 𝐵) → (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵)
2918, 19, 23, 28syl3anc 1473 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵)
30 imassrn 5627 . . . . . . . . . . . . . . . 16 (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝐹
31 frn 6206 . . . . . . . . . . . . . . . . 17 (𝐹:𝐼𝐵 → ran 𝐹𝐵)
3231adantr 472 . . . . . . . . . . . . . . . 16 ((𝐹:𝐼𝐵𝐼 ∈ V) → ran 𝐹𝐵)
3330, 32syl5ss 3747 . . . . . . . . . . . . . . 15 ((𝐹:𝐼𝐵𝐼 ∈ V) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵)
3433ad2antlr 765 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵)
35 eqid 2752 . . . . . . . . . . . . . . 15 (LSpan‘𝑆) = (LSpan‘𝑆)
3624, 35lspssv 19177 . . . . . . . . . . . . . 14 ((𝑆 ∈ LMod ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵)
3718, 34, 36syl2anc 696 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵)
38 f1elima 6675 . . . . . . . . . . . . 13 ((𝐺:𝐵1-1𝐶 ∧ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵 ∧ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
3916, 29, 37, 38syl3anc 1473 . . . . . . . . . . . 12 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
40 simplll 815 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺 ∈ (𝑆 LMHom 𝑇))
41 eqid 2752 . . . . . . . . . . . . . . . 16 ( ·𝑠𝑇) = ( ·𝑠𝑇)
4225, 27, 24, 26, 41lmhmlin 19229 . . . . . . . . . . . . . . 15 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑥) ∈ 𝐵) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
4340, 19, 23, 42syl3anc 1473 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
44 ffn 6198 . . . . . . . . . . . . . . . . 17 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
4544ad2antrl 766 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐹 Fn 𝐼)
46 fvco2 6427 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐼𝑥𝐼) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4745, 21, 46syl2an 495 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4847oveq2d 6821 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
4943, 48eqtr4d 2789 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)))
50 eqid 2752 . . . . . . . . . . . . . . . 16 (LSpan‘𝑇) = (LSpan‘𝑇)
5124, 35, 50lmhmlsp 19243 . . . . . . . . . . . . . . 15 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))))
5240, 34, 51syl2anc 696 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))))
53 imaco 5793 . . . . . . . . . . . . . . 15 ((𝐺𝐹) “ (𝐼 ∖ {𝑥})) = (𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))
5453fveq2i 6347 . . . . . . . . . . . . . 14 ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥}))))
5552, 54syl6eqr 2804 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))))
5649, 55eleq12d 2825 . . . . . . . . . . . 12 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5739, 56bitr3d 270 . . . . . . . . . . 11 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5857notbid 307 . . . . . . . . . 10 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5958anassrs 683 . . . . . . . . 9 (((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆))) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
6015, 59sylan2 492 . . . . . . . 8 (((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))})) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
6160ralbidva 3115 . . . . . . 7 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
62 eqid 2752 . . . . . . . . . . . 12 (Scalar‘𝑇) = (Scalar‘𝑇)
6325, 62lmhmsca 19224 . . . . . . . . . . 11 (𝐺 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
6463fveq2d 6348 . . . . . . . . . 10 (𝐺 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑆)))
6563fveq2d 6348 . . . . . . . . . . 11 (𝐺 ∈ (𝑆 LMHom 𝑇) → (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑆)))
6665sneqd 4325 . . . . . . . . . 10 (𝐺 ∈ (𝑆 LMHom 𝑇) → {(0g‘(Scalar‘𝑇))} = {(0g‘(Scalar‘𝑆))})
6764, 66difeq12d 3864 . . . . . . . . 9 (𝐺 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}))
6867ad3antrrr 768 . . . . . . . 8 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}))
6968raleqdv 3275 . . . . . . 7 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7061, 69bitr4d 271 . . . . . 6 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7170ralbidva 3115 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7217ad2antrr 764 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝑆 ∈ LMod)
73 simprr 813 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐼 ∈ V)
74 eqid 2752 . . . . . . 7 (0g‘(Scalar‘𝑆)) = (0g‘(Scalar‘𝑆))
7524, 26, 35, 25, 27, 74islindf2 20347 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝐼 ∈ V ∧ 𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
7672, 73, 20, 75syl3anc 1473 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
77 lmhmlmod2 19226 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
7877ad2antrr 764 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝑇 ∈ LMod)
7910ad2ant2lr 801 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐺𝐹):𝐼𝐶)
80 lindfmm.c . . . . . . 7 𝐶 = (Base‘𝑇)
81 eqid 2752 . . . . . . 7 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
82 eqid 2752 . . . . . . 7 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
8380, 41, 50, 62, 81, 82islindf2 20347 . . . . . 6 ((𝑇 ∈ LMod ∧ 𝐼 ∈ V ∧ (𝐺𝐹):𝐼𝐶) → ((𝐺𝐹) LIndF 𝑇 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
8478, 73, 79, 83syl3anc 1473 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → ((𝐺𝐹) LIndF 𝑇 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
8571, 76, 843bitr4d 300 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))
8685exp32 632 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) → (𝐹:𝐼𝐵 → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))))
87863impia 1109 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇)))
886, 14, 87pm5.21ndd 368 1 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wral 3042  Vcvv 3332  cdif 3704  wss 3707  {csn 4313   class class class wbr 4796  ran crn 5259  cima 5261  ccom 5262   Fn wfn 6036  wf 6037  1-1wf1 6038  cfv 6041  (class class class)co 6805  Basecbs 16051  Scalarcsca 16138   ·𝑠 cvsca 16139  0gc0g 16294  LModclmod 19057  LSpanclspn 19165   LMHom clmhm 19213   LIndF clindf 20337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-0g 16296  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-grp 17618  df-minusg 17619  df-sbg 17620  df-subg 17784  df-ghm 17851  df-mgp 18682  df-ur 18694  df-ring 18741  df-lmod 19059  df-lss 19127  df-lsp 19166  df-lmhm 19216  df-lindf 20339
This theorem is referenced by:  lindsmm  20361
  Copyright terms: Public domain W3C validator