![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincvalsng | Structured version Visualization version GIF version |
Description: The linear combination over a singleton. (Contributed by AV, 25-May-2019.) |
Ref | Expression |
---|---|
lincvalsn.b | ⊢ 𝐵 = (Base‘𝑀) |
lincvalsn.s | ⊢ 𝑆 = (Scalar‘𝑀) |
lincvalsn.r | ⊢ 𝑅 = (Base‘𝑆) |
lincvalsn.t | ⊢ · = ( ·𝑠 ‘𝑀) |
Ref | Expression |
---|---|
lincvalsng | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1130 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑀 ∈ LMod) | |
2 | simp2 1131 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑉 ∈ 𝐵) | |
3 | lincvalsn.r | . . . . . . . 8 ⊢ 𝑅 = (Base‘𝑆) | |
4 | lincvalsn.s | . . . . . . . . 9 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | 4 | fveq2i 6335 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘(Scalar‘𝑀)) |
6 | 3, 5 | eqtri 2793 | . . . . . . 7 ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) |
7 | 6 | eleq2i 2842 | . . . . . 6 ⊢ (𝑌 ∈ 𝑅 ↔ 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
8 | 7 | biimpi 206 | . . . . 5 ⊢ (𝑌 ∈ 𝑅 → 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
9 | 8 | 3ad2ant3 1129 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
10 | fvexd 6344 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (Base‘(Scalar‘𝑀)) ∈ V) | |
11 | eqid 2771 | . . . . 5 ⊢ {〈𝑉, 𝑌〉} = {〈𝑉, 𝑌〉} | |
12 | 11 | mapsnop 42651 | . . . 4 ⊢ ((𝑉 ∈ 𝐵 ∧ 𝑌 ∈ (Base‘(Scalar‘𝑀)) ∧ (Base‘(Scalar‘𝑀)) ∈ V) → {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 {𝑉})) |
13 | 2, 9, 10, 12 | syl3anc 1476 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 {𝑉})) |
14 | snelpwi 5040 | . . . . 5 ⊢ (𝑉 ∈ (Base‘𝑀) → {𝑉} ∈ 𝒫 (Base‘𝑀)) | |
15 | lincvalsn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
16 | 14, 15 | eleq2s 2868 | . . . 4 ⊢ (𝑉 ∈ 𝐵 → {𝑉} ∈ 𝒫 (Base‘𝑀)) |
17 | 16 | 3ad2ant2 1128 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → {𝑉} ∈ 𝒫 (Base‘𝑀)) |
18 | lincval 42726 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 {𝑉}) ∧ {𝑉} ∈ 𝒫 (Base‘𝑀)) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
19 | 1, 13, 17, 18 | syl3anc 1476 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
20 | lmodgrp 19080 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
21 | grpmnd 17637 | . . . . 5 ⊢ (𝑀 ∈ Grp → 𝑀 ∈ Mnd) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
23 | 22 | 3ad2ant1 1127 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑀 ∈ Mnd) |
24 | fvsng 6591 | . . . . . 6 ⊢ ((𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉}‘𝑉) = 𝑌) | |
25 | 24 | 3adant1 1124 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉}‘𝑉) = 𝑌) |
26 | 25 | oveq1d 6808 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) = (𝑌( ·𝑠 ‘𝑀)𝑉)) |
27 | eqid 2771 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
28 | 15, 4, 27, 3 | lmodvscl 19090 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑌 ∈ 𝑅 ∧ 𝑉 ∈ 𝐵) → (𝑌( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
29 | 28 | 3com23 1120 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝑌( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
30 | 26, 29 | eqeltrd 2850 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
31 | fveq2 6332 | . . . . 5 ⊢ (𝑣 = 𝑉 → ({〈𝑉, 𝑌〉}‘𝑣) = ({〈𝑉, 𝑌〉}‘𝑉)) | |
32 | id 22 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝑣 = 𝑉) | |
33 | 31, 32 | oveq12d 6811 | . . . 4 ⊢ (𝑣 = 𝑉 → (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
34 | 15, 33 | gsumsn 18561 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝐵 ∧ (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
35 | 23, 2, 30, 34 | syl3anc 1476 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
36 | lincvalsn.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑀) | |
37 | 36 | eqcomi 2780 | . . . 4 ⊢ ( ·𝑠 ‘𝑀) = · |
38 | 37 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ( ·𝑠 ‘𝑀) = · ) |
39 | eqidd 2772 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑉 = 𝑉) | |
40 | 38, 25, 39 | oveq123d 6814 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) = (𝑌 · 𝑉)) |
41 | 19, 35, 40 | 3eqtrd 2809 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 Vcvv 3351 𝒫 cpw 4297 {csn 4316 〈cop 4322 ↦ cmpt 4863 ‘cfv 6031 (class class class)co 6793 ↑𝑚 cmap 8009 Basecbs 16064 Scalarcsca 16152 ·𝑠 cvsca 16153 Σg cgsu 16309 Mndcmnd 17502 Grpcgrp 17630 LModclmod 19073 linC clinc 42721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-0g 16310 df-gsum 16311 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-mulg 17749 df-cntz 17957 df-lmod 19075 df-linc 42723 |
This theorem is referenced by: lincvalsn 42734 snlindsntorlem 42787 ldepsnlinclem1 42822 ldepsnlinclem2 42823 |
Copyright terms: Public domain | W3C validator |