Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsumcl Structured version   Visualization version   GIF version

Theorem lincsumcl 42545
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypothesis
Ref Expression
lincsumcl.b + = (+g𝑀)
Assertion
Ref Expression
lincsumcl (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lincsumcl
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2651 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
3 eqid 2651 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
41, 2, 3lcoval 42526 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)))))
51, 2, 3lcoval 42526 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))))
64, 5anbi12d 747 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) ↔ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))))
7 simpll 805 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝑀 ∈ LMod)
8 simpll 805 . . . . . . 7 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐶 ∈ (Base‘𝑀))
98adantl 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝐶 ∈ (Base‘𝑀))
10 simprl 809 . . . . . . 7 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐷 ∈ (Base‘𝑀))
1110adantl 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝐷 ∈ (Base‘𝑀))
12 lincsumcl.b . . . . . . 7 + = (+g𝑀)
131, 12lmodvacl 18925 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → (𝐶 + 𝐷) ∈ (Base‘𝑀))
147, 9, 11, 13syl3anc 1366 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → (𝐶 + 𝐷) ∈ (Base‘𝑀))
152lmodfgrp 18920 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Grp)
16 grpmnd 17476 . . . . . . . . . . . . . . . . . . 19 ((Scalar‘𝑀) ∈ Grp → (Scalar‘𝑀) ∈ Mnd)
1715, 16syl 17 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Mnd)
1817adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) ∈ Mnd)
1918adantl 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (Scalar‘𝑀) ∈ Mnd)
20 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
2120adantl 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
22 simpll 805 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → 𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
23 simpl 472 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
2422, 23anim12i 589 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)))
2524adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)))
26 eqid 2651 . . . . . . . . . . . . . . . . 17 (+g‘(Scalar‘𝑀)) = (+g‘(Scalar‘𝑀))
273, 26ofaddmndmap 42447 . . . . . . . . . . . . . . . 16 (((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))) → (𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
2819, 21, 25, 27syl3anc 1366 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
2917anim1i 591 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
3029adantl 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
31 simprl 809 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → 𝑦 finSupp (0g‘(Scalar‘𝑀)))
3231adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → 𝑦 finSupp (0g‘(Scalar‘𝑀)))
33 simprl 809 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 finSupp (0g‘(Scalar‘𝑀)))
3432, 33anim12i 589 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))))
3534adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))))
363mndpfsupp 42482 . . . . . . . . . . . . . . . 16 ((((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀)))) → (𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)))
3730, 25, 35, 36syl3anc 1366 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)))
38 oveq12 6699 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐶 = (𝑦( linC ‘𝑀)𝑉) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
3938expcom 450 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 = (𝑥( linC ‘𝑀)𝑉) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4039adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4140adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4241com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 = (𝑦( linC ‘𝑀)𝑉) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4342adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4443adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4544adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4645imp 444 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
4746adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
48 simpr 476 . . . . . . . . . . . . . . . . 17 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
49 eqid 2651 . . . . . . . . . . . . . . . . . 18 (𝑦( linC ‘𝑀)𝑉) = (𝑦( linC ‘𝑀)𝑉)
50 eqid 2651 . . . . . . . . . . . . . . . . . 18 (𝑥( linC ‘𝑀)𝑉) = (𝑥( linC ‘𝑀)𝑉)
5112, 49, 50, 2, 3, 26lincsum 42543 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀)))) → ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)) = ((𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5248, 25, 35, 51syl3anc 1366 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)) = ((𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5347, 52eqtrd 2685 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝐶 + 𝐷) = ((𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
54 breq1 4688 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) → (𝑠 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀))))
55 oveq1 6697 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) → (𝑠( linC ‘𝑀)𝑉) = ((𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5655eqeq2d 2661 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) → ((𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉) ↔ (𝐶 + 𝐷) = ((𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉)))
5754, 56anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = ((𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))))
5857rspcev 3340 . . . . . . . . . . . . . . 15 (((𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ ((𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = ((𝑦𝑓 (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
5928, 37, 53, 58syl12anc 1364 . . . . . . . . . . . . . 14 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
6059exp41 637 . . . . . . . . . . . . 13 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6160rexlimiva 3057 . . . . . . . . . . . 12 (∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6261expd 451 . . . . . . . . . . 11 (∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → (𝐶 ∈ (Base‘𝑀) → (𝐷 ∈ (Base‘𝑀) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))))
6362impcom 445 . . . . . . . . . 10 ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6463com13 88 . . . . . . . . 9 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6564rexlimiva 3057 . . . . . . . 8 (∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐷 ∈ (Base‘𝑀) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6665impcom 445 . . . . . . 7 ((𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6766impcom 445 . . . . . 6 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))
6867impcom 445 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
691, 2, 3lcoval 42526 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 + 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7069adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → ((𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 + 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7114, 68, 70mpbir2and 977 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))
7271ex 449 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
736, 72sylbid 230 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
7473imp 444 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wrex 2942  𝒫 cpw 4191   class class class wbr 4685  cfv 5926  (class class class)co 6690  𝑓 cof 6937  𝑚 cmap 7899   finSupp cfsupp 8316  Basecbs 15904  +gcplusg 15988  Scalarcsca 15991  0gc0g 16147  Mndcmnd 17341  Grpcgrp 17469  LModclmod 18911   linC clinc 42518   LinCo clinco 42519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-linc 42520  df-lco 42521
This theorem is referenced by:  lincsumscmcl  42547
  Copyright terms: Public domain W3C validator