![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincresunit1 | Structured version Visualization version GIF version |
Description: Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
Ref | Expression |
---|---|
lincresunit.b | ⊢ 𝐵 = (Base‘𝑀) |
lincresunit.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lincresunit.e | ⊢ 𝐸 = (Base‘𝑅) |
lincresunit.u | ⊢ 𝑈 = (Unit‘𝑅) |
lincresunit.0 | ⊢ 0 = (0g‘𝑅) |
lincresunit.z | ⊢ 𝑍 = (0g‘𝑀) |
lincresunit.n | ⊢ 𝑁 = (invg‘𝑅) |
lincresunit.i | ⊢ 𝐼 = (invr‘𝑅) |
lincresunit.t | ⊢ · = (.r‘𝑅) |
lincresunit.g | ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
Ref | Expression |
---|---|
lincresunit1 | ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑𝑚 (𝑆 ∖ {𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincresunit.g | . 2 ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
2 | eldifi 3765 | . . . . 5 ⊢ (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝑆) | |
3 | lincresunit.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
4 | lincresunit.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑀) | |
5 | lincresunit.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑅) | |
6 | lincresunit.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | lincresunit.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
8 | lincresunit.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝑀) | |
9 | lincresunit.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
10 | lincresunit.i | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
11 | lincresunit.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 1 | lincresunitlem2 42590 | . . . . 5 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑠 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ 𝐸) |
13 | 2, 12 | sylan2 490 | . . . 4 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ 𝐸) |
14 | eqid 2651 | . . . 4 ⊢ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
15 | 13, 14 | fmptd 6425 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))):(𝑆 ∖ {𝑋})⟶𝐸) |
16 | fvex 6239 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
17 | 5, 16 | eqeltri 2726 | . . . 4 ⊢ 𝐸 ∈ V |
18 | difexg 4841 | . . . . . 6 ⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V) | |
19 | 18 | 3ad2ant1 1102 | . . . . 5 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ V) |
20 | 19 | adantr 480 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑆 ∖ {𝑋}) ∈ V) |
21 | elmapg 7912 | . . . 4 ⊢ ((𝐸 ∈ V ∧ (𝑆 ∖ {𝑋}) ∈ V) → ((𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ∈ (𝐸 ↑𝑚 (𝑆 ∖ {𝑋})) ↔ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))):(𝑆 ∖ {𝑋})⟶𝐸)) | |
22 | 17, 20, 21 | sylancr 696 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → ((𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ∈ (𝐸 ↑𝑚 (𝑆 ∖ {𝑋})) ↔ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))):(𝑆 ∖ {𝑋})⟶𝐸)) |
23 | 15, 22 | mpbird 247 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ∈ (𝐸 ↑𝑚 (𝑆 ∖ {𝑋}))) |
24 | 1, 23 | syl5eqel 2734 | 1 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑𝑚 (𝑆 ∖ {𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 𝒫 cpw 4191 {csn 4210 ↦ cmpt 4762 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 Basecbs 15904 .rcmulr 15989 Scalarcsca 15991 0gc0g 16147 invgcminusg 17470 Unitcui 18685 invrcinvr 18717 LModclmod 18911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-lmod 18913 |
This theorem is referenced by: lincresunit3lem2 42594 lincresunit3 42595 isldepslvec2 42599 |
Copyright terms: Public domain | W3C validator |