Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincreslvec3 Structured version   Visualization version   GIF version

Theorem lincreslvec3 42799
 Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincreslvec3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠   𝐺,𝑠   𝑅,𝑠   𝑍,𝑠

Proof of Theorem lincreslvec3
StepHypRef Expression
1 lveclmod 19319 . . . 4 (𝑀 ∈ LVec → 𝑀 ∈ LMod)
213anim2i 1156 . . 3 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
323ad2ant1 1127 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
4 simp21 1248 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 ∈ (𝐸𝑚 𝑆))
5 elmapi 8031 . . . . . 6 (𝐹 ∈ (𝐸𝑚 𝑆) → 𝐹:𝑆𝐸)
653ad2ant1 1127 . . . . 5 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) → 𝐹:𝑆𝐸)
7 simp3 1132 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) → 𝑋𝑆)
8 ffvelrn 6500 . . . . 5 ((𝐹:𝑆𝐸𝑋𝑆) → (𝐹𝑋) ∈ 𝐸)
96, 7, 8syl2anr 584 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝐸)
10 simpr2 1235 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → (𝐹𝑋) ≠ 0 )
11 lincresunit.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
1211lvecdrng 19318 . . . . . . 7 (𝑀 ∈ LVec → 𝑅 ∈ DivRing)
13123ad2ant2 1128 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) → 𝑅 ∈ DivRing)
1413adantr 466 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → 𝑅 ∈ DivRing)
15 lincresunit.e . . . . . 6 𝐸 = (Base‘𝑅)
16 lincresunit.u . . . . . 6 𝑈 = (Unit‘𝑅)
17 lincresunit.0 . . . . . 6 0 = (0g𝑅)
1815, 16, 17drngunit 18962 . . . . 5 (𝑅 ∈ DivRing → ((𝐹𝑋) ∈ 𝑈 ↔ ((𝐹𝑋) ∈ 𝐸 ∧ (𝐹𝑋) ≠ 0 )))
1914, 18syl 17 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → ((𝐹𝑋) ∈ 𝑈 ↔ ((𝐹𝑋) ∈ 𝐸 ∧ (𝐹𝑋) ≠ 0 )))
209, 10, 19mpbir2and 692 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝑈)
21203adant3 1126 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹𝑋) ∈ 𝑈)
22 simp3 1132 . . 3 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) → 𝐹 finSupp 0 )
23223ad2ant2 1128 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 finSupp 0 )
24 simp3 1132 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹( linC ‘𝑀)𝑆) = 𝑍)
25 lincresunit.b . . 3 𝐵 = (Base‘𝑀)
26 lincresunit.z . . 3 𝑍 = (0g𝑀)
27 lincresunit.n . . 3 𝑁 = (invg𝑅)
28 lincresunit.i . . 3 𝐼 = (invr𝑅)
29 lincresunit.t . . 3 · = (.r𝑅)
30 lincresunit.g . . 3 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
3125, 11, 15, 16, 17, 26, 27, 28, 29, 30lincresunit3 42798 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
323, 4, 21, 23, 24, 31syl131anc 1489 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ≠ wne 2943   ∖ cdif 3720  𝒫 cpw 4297  {csn 4316   class class class wbr 4786   ↦ cmpt 4863  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793   ↑𝑚 cmap 8009   finSupp cfsupp 8431  Basecbs 16064  .rcmulr 16150  Scalarcsca 16152  0gc0g 16308  invgcminusg 17631  Unitcui 18847  invrcinvr 18879  DivRingcdr 18957  LModclmod 19073  LVecclvec 19315   linC clinc 42721 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-mulg 17749  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-drng 18959  df-lmod 19075  df-lvec 19316  df-linc 42723 This theorem is referenced by:  isldepslvec2  42802
 Copyright terms: Public domain W3C validator