Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincdifsn Structured version   Visualization version   GIF version

Theorem lincdifsn 42538
Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincdifsn.b 𝐵 = (Base‘𝑀)
lincdifsn.r 𝑅 = (Scalar‘𝑀)
lincdifsn.s 𝑆 = (Base‘𝑅)
lincdifsn.t · = ( ·𝑠𝑀)
lincdifsn.p + = (+g𝑀)
lincdifsn.0 0 = (0g𝑅)
Assertion
Ref Expression
lincdifsn (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))

Proof of Theorem lincdifsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp11 1111 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑀 ∈ LMod)
2 lincdifsn.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
3 lincdifsn.r . . . . . . . . . 10 𝑅 = (Scalar‘𝑀)
43fveq2i 6232 . . . . . . . . 9 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2673 . . . . . . . 8 𝑆 = (Base‘(Scalar‘𝑀))
65oveq1i 6700 . . . . . . 7 (𝑆𝑚 𝑉) = ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)
76eleq2i 2722 . . . . . 6 (𝐹 ∈ (𝑆𝑚 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
87biimpi 206 . . . . 5 (𝐹 ∈ (𝑆𝑚 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
98adantr 480 . . . 4 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
1093ad2ant2 1103 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
11 lincdifsn.b . . . . . . . 8 𝐵 = (Base‘𝑀)
1211pweqi 4195 . . . . . . 7 𝒫 𝐵 = 𝒫 (Base‘𝑀)
1312eleq2i 2722 . . . . . 6 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
1413biimpi 206 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
15143ad2ant2 1103 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
16153ad2ant1 1102 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
17 lincval 42523 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))))
181, 10, 16, 17syl3anc 1366 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))))
19 lincdifsn.p . . . 4 + = (+g𝑀)
20 lmodcmn 18959 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
21203ad2ant1 1102 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ CMnd)
22213ad2ant1 1102 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑀 ∈ CMnd)
23 simp12 1112 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑉 ∈ 𝒫 𝐵)
2414anim2i 592 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
25243adant3 1101 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
26253ad2ant1 1102 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
27 simp2l 1107 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 ∈ (𝑆𝑚 𝑉))
28 lincdifsn.0 . . . . . . . . 9 0 = (0g𝑅)
2928breq2i 4693 . . . . . . . 8 (𝐹 finSupp 0𝐹 finSupp (0g𝑅))
3029biimpi 206 . . . . . . 7 (𝐹 finSupp 0𝐹 finSupp (0g𝑅))
3130adantl 481 . . . . . 6 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp (0g𝑅))
32313ad2ant2 1103 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 finSupp (0g𝑅))
333, 2scmfsupp 42484 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
3426, 27, 32, 33syl3anc 1366 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
35 simpl1 1084 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
3635adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
37 elmapi 7921 . . . . . . . . . 10 (𝐹 ∈ (𝑆𝑚 𝑉) → 𝐹:𝑉𝑆)
38 ffvelrn 6397 . . . . . . . . . . . 12 ((𝐹:𝑉𝑆𝑥𝑉) → (𝐹𝑥) ∈ 𝑆)
3938ex 449 . . . . . . . . . . 11 (𝐹:𝑉𝑆 → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆))
4039a1d 25 . . . . . . . . . 10 (𝐹:𝑉𝑆 → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4137, 40syl 17 . . . . . . . . 9 (𝐹 ∈ (𝑆𝑚 𝑉) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4241adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4342impcom 445 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆))
4443imp 444 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ 𝑆)
45 elelpwi 4204 . . . . . . . . . 10 ((𝑥𝑉𝑉 ∈ 𝒫 𝐵) → 𝑥𝐵)
4645expcom 450 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑥𝑉𝑥𝐵))
47463ad2ant2 1103 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉𝑥𝐵))
4847adantr 480 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑥𝑉𝑥𝐵))
4948imp 444 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → 𝑥𝐵)
50 eqid 2651 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5111, 3, 50, 2lmodvscl 18928 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐹𝑥) ∈ 𝑆𝑥𝐵) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
5236, 44, 49, 51syl3anc 1366 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
53523adantl3 1239 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥𝑉) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
54 simp13 1113 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑋𝑉)
55 ffvelrn 6397 . . . . . . . . . . 11 ((𝐹:𝑉𝑆𝑋𝑉) → (𝐹𝑋) ∈ 𝑆)
5655expcom 450 . . . . . . . . . 10 (𝑋𝑉 → (𝐹:𝑉𝑆 → (𝐹𝑋) ∈ 𝑆))
57563ad2ant3 1104 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹:𝑉𝑆 → (𝐹𝑋) ∈ 𝑆))
5837, 57syl5com 31 . . . . . . . 8 (𝐹 ∈ (𝑆𝑚 𝑉) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) ∈ 𝑆))
5958adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) ∈ 𝑆))
6059impcom 445 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝑆)
61 elelpwi 4204 . . . . . . . . 9 ((𝑋𝑉𝑉 ∈ 𝒫 𝐵) → 𝑋𝐵)
6261ancoms 468 . . . . . . . 8 ((𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
63623adant1 1099 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
6463adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑋𝐵)
65 lincdifsn.t . . . . . . 7 · = ( ·𝑠𝑀)
6611, 3, 65, 2lmodvscl 18928 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐹𝑋) ∈ 𝑆𝑋𝐵) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
6735, 60, 64, 66syl3anc 1366 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
68673adant3 1101 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
6965eqcomi 2660 . . . . . . 7 ( ·𝑠𝑀) = ·
7069a1i 11 . . . . . 6 (𝑥 = 𝑋 → ( ·𝑠𝑀) = · )
71 fveq2 6229 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
72 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
7370, 71, 72oveq123d 6711 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑋) · 𝑋))
7473adantl 481 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 = 𝑋) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑋) · 𝑋))
7511, 19, 22, 23, 34, 53, 54, 68, 74gsumdifsnd 18406 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
76 fveq1 6228 . . . . . . . . . 10 (𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋})) → (𝐺𝑥) = ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥))
77763ad2ant3 1104 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺𝑥) = ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥))
78 fvres 6245 . . . . . . . . 9 (𝑥 ∈ (𝑉 ∖ {𝑋}) → ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥) = (𝐹𝑥))
7977, 78sylan9eq 2705 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑋})) → (𝐺𝑥) = (𝐹𝑥))
8079oveq1d 6705 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑋})) → ((𝐺𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑥)( ·𝑠𝑀)𝑥))
8180mpteq2dva 4777 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥)) = (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)))
8281eqcomd 2657 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) = (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥)))
8382oveq2d 6706 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
8483oveq1d 6705 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
8575, 84eqtrd 2685 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
86 eqid 2651 . . . . . . . . . . . 12 𝑉 = 𝑉
8786, 5feq23i 6077 . . . . . . . . . . 11 (𝐹:𝑉𝑆𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
8837, 87sylib 208 . . . . . . . . . 10 (𝐹 ∈ (𝑆𝑚 𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
8988adantr 480 . . . . . . . . 9 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
90893ad2ant2 1103 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
91 difssd 3771 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ⊆ 𝑉)
9290, 91fssresd 6109 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
93 feq1 6064 . . . . . . . 8 (𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋})) → (𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)) ↔ (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
94933ad2ant3 1104 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)) ↔ (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
9592, 94mpbird 247 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
96 fvex 6239 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
97 difexg 4841 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑉 ∖ {𝑋}) ∈ V)
98973ad2ant2 1103 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑉 ∖ {𝑋}) ∈ V)
99983ad2ant1 1102 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ∈ V)
100 elmapg 7912 . . . . . . 7 (((Base‘(Scalar‘𝑀)) ∈ V ∧ (𝑉 ∖ {𝑋}) ∈ V) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑉 ∖ {𝑋})) ↔ 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
10196, 99, 100sylancr 696 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑉 ∖ {𝑋})) ↔ 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
10295, 101mpbird 247 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑉 ∖ {𝑋})))
103 elpwi 4201 . . . . . . . . . 10 (𝑉 ∈ 𝒫 𝐵𝑉𝐵)
10411sseq2i 3663 . . . . . . . . . . . 12 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
105104biimpi 206 . . . . . . . . . . 11 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
106105ssdifssd 3781 . . . . . . . . . 10 (𝑉𝐵 → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
107103, 106syl 17 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
108107adantl 481 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
10997adantl 481 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ∈ V)
110 elpwg 4199 . . . . . . . . 9 ((𝑉 ∖ {𝑋}) ∈ V → ((𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)))
111109, 110syl 17 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ((𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)))
112108, 111mpbird 247 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1131123adant3 1101 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1141133ad2ant1 1102 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
115 lincval 42523 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑉 ∖ {𝑋})) ∧ (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
1161, 102, 114, 115syl3anc 1366 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
117116eqcomd 2657 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) = (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})))
118117oveq1d 6705 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))
11918, 85, 1183eqtrd 2689 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  wss 3607  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  cmpt 4762  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899   finSupp cfsupp 8316  Basecbs 15904  +gcplusg 15988  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147   Σg cgsu 16148  CMndccmn 18239  LModclmod 18911   linC clinc 42518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-linc 42520
This theorem is referenced by:  lincext3  42570  lindslinindimp2lem4  42575  lincresunit3  42595
  Copyright terms: Public domain W3C validator