Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc1 Structured version   Visualization version   GIF version

Theorem linc1 42539
 Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
linc1.b 𝐵 = (Base‘𝑀)
linc1.s 𝑆 = (Scalar‘𝑀)
linc1.0 0 = (0g𝑆)
linc1.1 1 = (1r𝑆)
linc1.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
Assertion
Ref Expression
linc1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥,𝑋   𝑥, 0   𝑥, 1
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem linc1
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1081 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ LMod)
2 linc1.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑀)
32lmodring 18919 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑆 ∈ Ring)
42eqcomi 2660 . . . . . . . . . . . 12 (Scalar‘𝑀) = 𝑆
54fveq2i 6232 . . . . . . . . . . 11 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
6 linc1.1 . . . . . . . . . . 11 1 = (1r𝑆)
75, 6ringidcl 18614 . . . . . . . . . 10 (𝑆 ∈ Ring → 1 ∈ (Base‘(Scalar‘𝑀)))
8 linc1.0 . . . . . . . . . . 11 0 = (0g𝑆)
95, 8ring0cl 18615 . . . . . . . . . 10 (𝑆 ∈ Ring → 0 ∈ (Base‘(Scalar‘𝑀)))
107, 9jca 553 . . . . . . . . 9 (𝑆 ∈ Ring → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
113, 10syl 17 . . . . . . . 8 (𝑀 ∈ LMod → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
12113ad2ant1 1102 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
1312adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑥𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
14 ifcl 4163 . . . . . 6 (( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑋, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
1513, 14syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑥𝑉) → if(𝑥 = 𝑋, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
16 linc1.f . . . . 5 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
1715, 16fmptd 6425 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
18 fvex 6239 . . . . 5 (Base‘(Scalar‘𝑀)) ∈ V
19 simp2 1082 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 𝐵)
20 elmapg 7912 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2118, 19, 20sylancr 696 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2217, 21mpbird 247 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
23 linc1.b . . . . . . 7 𝐵 = (Base‘𝑀)
2423pweqi 4195 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2524eleq2i 2722 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2625biimpi 206 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
27263ad2ant2 1103 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
28 lincval 42523 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))))
291, 22, 27, 28syl3anc 1366 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))))
30 eqid 2651 . . 3 (0g𝑀) = (0g𝑀)
31 lmodgrp 18918 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
32 grpmnd 17476 . . . . 5 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
3331, 32syl 17 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
34333ad2ant1 1102 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ Mnd)
35 simp3 1083 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝑉)
361adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑀 ∈ LMod)
37 simpr 476 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑦𝑉)
38 eqid 2651 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
392, 38, 6lmod1cl 18938 . . . . . . . . . 10 (𝑀 ∈ LMod → 1 ∈ (Base‘𝑆))
40393ad2ant1 1102 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 1 ∈ (Base‘𝑆))
4140adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 1 ∈ (Base‘𝑆))
422, 38, 8lmod0cl 18937 . . . . . . . . . 10 (𝑀 ∈ LMod → 0 ∈ (Base‘𝑆))
43423ad2ant1 1102 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 0 ∈ (Base‘𝑆))
4443adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 0 ∈ (Base‘𝑆))
4541, 44ifcld 4164 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑆))
46 eqeq1 2655 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = 𝑋𝑦 = 𝑋))
4746ifbid 4141 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑦 = 𝑋, 1 , 0 ))
4847, 16fvmptg 6319 . . . . . . 7 ((𝑦𝑉 ∧ if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑆)) → (𝐹𝑦) = if(𝑦 = 𝑋, 1 , 0 ))
4937, 45, 48syl2anc 694 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → (𝐹𝑦) = if(𝑦 = 𝑋, 1 , 0 ))
5049, 45eqeltrd 2730 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → (𝐹𝑦) ∈ (Base‘𝑆))
51 elelpwi 4204 . . . . . . . 8 ((𝑦𝑉𝑉 ∈ 𝒫 𝐵) → 𝑦𝐵)
5251expcom 450 . . . . . . 7 (𝑉 ∈ 𝒫 𝐵 → (𝑦𝑉𝑦𝐵))
53523ad2ant2 1103 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑦𝑉𝑦𝐵))
5453imp 444 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑦𝐵)
55 eqid 2651 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5623, 2, 55, 38lmodvscl 18928 . . . . 5 ((𝑀 ∈ LMod ∧ (𝐹𝑦) ∈ (Base‘𝑆) ∧ 𝑦𝐵) → ((𝐹𝑦)( ·𝑠𝑀)𝑦) ∈ 𝐵)
5736, 50, 54, 56syl3anc 1366 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → ((𝐹𝑦)( ·𝑠𝑀)𝑦) ∈ 𝐵)
58 eqid 2651 . . . 4 (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) = (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))
5957, 58fmptd 6425 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)):𝑉𝐵)
60 fveq2 6229 . . . . . . 7 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
61 id 22 . . . . . . 7 (𝑦 = 𝑣𝑦 = 𝑣)
6260, 61oveq12d 6708 . . . . . 6 (𝑦 = 𝑣 → ((𝐹𝑦)( ·𝑠𝑀)𝑦) = ((𝐹𝑣)( ·𝑠𝑀)𝑣))
6362cbvmptv 4783 . . . . 5 (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) = (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))
64 fvexd 6241 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (0g𝑀) ∈ V)
65 ovexd 6720 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ V)
6663, 19, 64, 65mptsuppd 7363 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) supp (0g𝑀)) = {𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)})
67 2a1 28 . . . . . . 7 (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋)))
68 simprr 811 . . . . . . . . . . . . . 14 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑣𝑉)
69 fvex 6239 . . . . . . . . . . . . . . . 16 (1r𝑆) ∈ V
706, 69eqeltri 2726 . . . . . . . . . . . . . . 15 1 ∈ V
71 fvex 6239 . . . . . . . . . . . . . . . 16 (0g𝑆) ∈ V
728, 71eqeltri 2726 . . . . . . . . . . . . . . 15 0 ∈ V
7370, 72ifex 4189 . . . . . . . . . . . . . 14 if(𝑣 = 𝑋, 1 , 0 ) ∈ V
74 eqeq1 2655 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (𝑥 = 𝑋𝑣 = 𝑋))
7574ifbid 4141 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 ))
7675, 16fvmptg 6319 . . . . . . . . . . . . . 14 ((𝑣𝑉 ∧ if(𝑣 = 𝑋, 1 , 0 ) ∈ V) → (𝐹𝑣) = if(𝑣 = 𝑋, 1 , 0 ))
7768, 73, 76sylancl 695 . . . . . . . . . . . . 13 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (𝐹𝑣) = if(𝑣 = 𝑋, 1 , 0 ))
78 iffalse 4128 . . . . . . . . . . . . . 14 𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7978adantr 480 . . . . . . . . . . . . 13 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
8077, 79eqtrd 2685 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (𝐹𝑣) = 0 )
8180oveq1d 6705 . . . . . . . . . . 11 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ( 0 ( ·𝑠𝑀)𝑣))
821adantr 480 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
8382adantl 481 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑀 ∈ LMod)
84 elelpwi 4204 . . . . . . . . . . . . . . . 16 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
8584expcom 450 . . . . . . . . . . . . . . 15 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
86853ad2ant2 1103 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑣𝑉𝑣𝐵))
8786imp 444 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 𝑣𝐵)
8887adantl 481 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑣𝐵)
8923, 2, 55, 8, 30lmod0vs 18944 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = (0g𝑀))
9083, 88, 89syl2anc 694 . . . . . . . . . . 11 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ( 0 ( ·𝑠𝑀)𝑣) = (0g𝑀))
9181, 90eqtrd 2685 . . . . . . . . . 10 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (0g𝑀))
9291neeq1d 2882 . . . . . . . . 9 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) ↔ (0g𝑀) ≠ (0g𝑀)))
93 eqneqall 2834 . . . . . . . . . 10 ((0g𝑀) = (0g𝑀) → ((0g𝑀) ≠ (0g𝑀) → 𝑣 = 𝑋))
9430, 93ax-mp 5 . . . . . . . . 9 ((0g𝑀) ≠ (0g𝑀) → 𝑣 = 𝑋)
9592, 94syl6bi 243 . . . . . . . 8 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9695ex 449 . . . . . . 7 𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋)))
9767, 96pm2.61i 176 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9897ralrimiva 2995 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ∀𝑣𝑉 (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
99 rabsssn 4247 . . . . 5 ({𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)} ⊆ {𝑋} ↔ ∀𝑣𝑉 (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
10098, 99sylibr 224 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)} ⊆ {𝑋})
10166, 100eqsstrd 3672 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) supp (0g𝑀)) ⊆ {𝑋})
10223, 30, 34, 19, 35, 59, 101gsumpt 18407 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))) = ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋))
103 ovex 6718 . . . 4 ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ V
104 fveq2 6229 . . . . . 6 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
105 id 22 . . . . . 6 (𝑦 = 𝑋𝑦 = 𝑋)
106104, 105oveq12d 6708 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑦)( ·𝑠𝑀)𝑦) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
107106, 58fvmptg 6319 . . . 4 ((𝑋𝑉 ∧ ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ V) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
10835, 103, 107sylancl 695 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
109 iftrue 4125 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑋, 1 , 0 ) = 1 )
110109, 16fvmptg 6319 . . . . 5 ((𝑋𝑉1 ∈ V) → (𝐹𝑋) = 1 )
11135, 70, 110sylancl 695 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) = 1 )
112111oveq1d 6705 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) = ( 1 ( ·𝑠𝑀)𝑋))
113 elelpwi 4204 . . . . . 6 ((𝑋𝑉𝑉 ∈ 𝒫 𝐵) → 𝑋𝐵)
114113ancoms 468 . . . . 5 ((𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
1151143adant1 1099 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
11623, 2, 55, 6lmodvs1 18939 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ( 1 ( ·𝑠𝑀)𝑋) = 𝑋)
1171, 115, 116syl2anc 694 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ( 1 ( ·𝑠𝑀)𝑋) = 𝑋)
118108, 112, 1173eqtrd 2689 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = 𝑋)
11929, 102, 1183eqtrd 2689 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  {crab 2945  Vcvv 3231   ⊆ wss 3607  ifcif 4119  𝒫 cpw 4191  {csn 4210   ↦ cmpt 4762  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   supp csupp 7340   ↑𝑚 cmap 7899  Basecbs 15904  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147   Σg cgsu 16148  Mndcmnd 17341  Grpcgrp 17469  1rcur 18547  Ringcrg 18593  LModclmod 18911   linC clinc 42518 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-linc 42520 This theorem is referenced by:  lcoss  42550
 Copyright terms: Public domain W3C validator