![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version |
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.) |
Ref | Expression |
---|---|
limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 5889 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 1 | simp3bi 1142 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ≠ wne 2932 ∅c0 4058 ∪ cuni 4588 Ord word 5883 Lim wlim 5885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 df-lim 5889 |
This theorem is referenced by: limuni2 5947 unizlim 6005 nlimsucg 7208 oa0r 7789 om1r 7794 oarec 7813 oeworde 7844 oeeulem 7852 infeq5i 8708 r1sdom 8812 rankxplim3 8919 cflm 9284 coflim 9295 cflim2 9297 cfss 9299 cfslbn 9301 limsucncmpi 32771 |
Copyright terms: Public domain | W3C validator |