![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupvaluzmpt | Structured version Visualization version GIF version |
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupvaluzmpt.j | ⊢ Ⅎ𝑗𝜑 |
limsupvaluzmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupvaluzmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupvaluzmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
limsupvaluzmpt | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupvaluzmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | limsupvaluzmpt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | limsupvaluzmpt.j | . . . 4 ⊢ Ⅎ𝑗𝜑 | |
4 | limsupvaluzmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
5 | 3, 4 | fmptd2f 39959 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ*) |
6 | 1, 2, 5 | limsupvaluz 40461 | . 2 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )), ℝ*, < )) |
7 | 2 | uzssd3 40169 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑍 → (ℤ≥‘𝑘) ⊆ 𝑍) |
8 | 7 | resmptd 5610 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)) = (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵)) |
9 | 8 | rneqd 5508 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)) = ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵)) |
10 | 9 | supeq1d 8519 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) |
11 | 10 | mpteq2ia 4892 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )) = (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )) = (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ))) |
13 | 12 | rneqd 5508 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )) = ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < ))) |
14 | 13 | infeq1d 8550 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran ((𝑗 ∈ 𝑍 ↦ 𝐵) ↾ (ℤ≥‘𝑘)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) |
15 | 6, 14 | eqtrd 2794 | 1 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 Ⅎwnf 1857 ∈ wcel 2139 ↦ cmpt 4881 ran crn 5267 ↾ cres 5268 ‘cfv 6049 supcsup 8513 infcinf 8514 ℝ*cxr 10285 < clt 10286 ℤcz 11589 ℤ≥cuz 11899 lim supclsp 14420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-ico 12394 df-fl 12807 df-limsup 14421 |
This theorem is referenced by: smflimsuplem4 41553 |
Copyright terms: Public domain | W3C validator |