Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz2 Structured version   Visualization version   GIF version

Theorem limsupvaluz2 40473
 Description: The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz2.m (𝜑𝑀 ∈ ℤ)
limsupvaluz2.z 𝑍 = (ℤ𝑀)
limsupvaluz2.f (𝜑𝐹:𝑍⟶ℝ)
limsupvaluz2.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Assertion
Ref Expression
limsupvaluz2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem limsupvaluz2
Dummy variables 𝑖 𝑗 𝑥 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupvaluz2.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupvaluz2.z . . 3 𝑍 = (ℤ𝑀)
3 limsupvaluz2.f . . . 4 (𝜑𝐹:𝑍⟶ℝ)
43frexr 40102 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
51, 2, 4limsupvaluz 40443 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ))
63adantr 472 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶ℝ)
7 id 22 . . . . . . . . . . 11 (𝑛𝑍𝑛𝑍)
82, 7uzssd2 40142 . . . . . . . . . 10 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
98adantl 473 . . . . . . . . 9 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
106, 9feqresmpt 6412 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)) = (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
1110rneqd 5508 . . . . . . 7 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
1211supeq1d 8517 . . . . . 6 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ))
13 nfcv 2902 . . . . . . . . . 10 𝑚𝐹
14 limsupvaluz2.r . . . . . . . . . . 11 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1514renepnfd 10282 . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ≠ +∞)
1613, 2, 3, 15limsupubuz 40448 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
1716adantr 472 . . . . . . . 8 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
18 ssralv 3807 . . . . . . . . . . 11 ((ℤ𝑛) ⊆ 𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
198, 18syl 17 . . . . . . . . . 10 (𝑛𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2019adantl 473 . . . . . . . . 9 ((𝜑𝑛𝑍) → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2120reximdv 3154 . . . . . . . 8 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2217, 21mpd 15 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥)
23 nfv 1992 . . . . . . . 8 𝑚(𝜑𝑛𝑍)
242eluzelz2 40125 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℤ)
25 uzid 11894 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
26 ne0i 4064 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
2724, 25, 263syl 18 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
2827adantl 473 . . . . . . . 8 ((𝜑𝑛𝑍) → (ℤ𝑛) ≠ ∅)
296adantr 472 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶ℝ)
309sselda 3744 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
3129, 30ffvelrnd 6523 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℝ)
3223, 28, 31supxrre3rnmpt 40154 . . . . . . 7 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ ↔ ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
3322, 32mpbird 247 . . . . . 6 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ)
3412, 33eqeltrd 2839 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ ℝ)
35 eqid 2760 . . . . 5 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
3634, 35fmptd 6548 . . . 4 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )):𝑍⟶ℝ)
3736frnd 39925 . . 3 (𝜑 → ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⊆ ℝ)
38 nfv 1992 . . . 4 𝑛𝜑
3934elexd 3354 . . . 4 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ V)
401, 2uzn0d 40150 . . . 4 (𝜑𝑍 ≠ ∅)
4138, 39, 35, 40rnmptn0 39912 . . 3 (𝜑 → ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ≠ ∅)
42 nfcv 2902 . . . . . . . . . 10 𝑗𝐹
4342, 1, 2, 4limsupre3uz 40471 . . . . . . . . 9 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥)))
4414, 43mpbid 222 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥))
4544simpld 477 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗))
46 simp-4r 827 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ)
4746rexrd 10281 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
4843ad2ant1 1128 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝐹:𝑍⟶ℝ*)
492uztrn2 11897 . . . . . . . . . . . . . . 15 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
50493adant1 1125 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
5148, 50ffvelrnd 6523 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ*)
5251ad5ant134 1467 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
53 rnresss 39864 . . . . . . . . . . . . . . . . 17 ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹
5453a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹)
553frnd 39925 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ⊆ ℝ)
5655adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → ran 𝐹 ⊆ ℝ)
5754, 56sstrd 3754 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ)
58 ressxr 10275 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℝ*
5958a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → ℝ ⊆ ℝ*)
6057, 59sstrd 3754 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
6160supxrcld 39789 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
6261ad5ant13 1216 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
63 simpr 479 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
64603adant3 1127 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
65 fvres 6368 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑖) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) = (𝐹𝑗))
6665eqcomd 2766 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑖) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
67663ad2ant3 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
683ffnd 6207 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 Fn 𝑍)
6968adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → 𝐹 Fn 𝑍)
70 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑖𝑍𝑖𝑍)
712, 70uzssd2 40142 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
7271adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
73 fnssres 6165 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑍 ∧ (ℤ𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
7469, 72, 73syl2anc 696 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
75743adant3 1127 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
76 simp3 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ (ℤ𝑖))
77 fnfvelrn 6519 . . . . . . . . . . . . . . . 16 (((𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
7875, 76, 77syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
7967, 78eqeltrd 2839 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
80 eqid 2760 . . . . . . . . . . . . . 14 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )
8164, 79, 80supxrubd 39796 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8281ad5ant134 1467 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8347, 52, 62, 63, 82xrletrd 12186 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8483ex 449 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝑥 ≤ (𝐹𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8584rexlimdva 3169 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8685ralimdva 3100 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8786reximdva 3155 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8845, 87mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8988idi 2 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
90 fveq2 6352 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
9190reseq2d 5551 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑖)))
9291rneqd 5508 . . . . . . . . . 10 (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑖)))
9392supeq1d 8517 . . . . . . . . 9 (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
94 eqcom 2767 . . . . . . . . . . 11 (𝑛 = 𝑖𝑖 = 𝑛)
9594imbi1i 338 . . . . . . . . . 10 ((𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
96 eqcom 2767 . . . . . . . . . . 11 (sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
9796imbi2i 325 . . . . . . . . . 10 ((𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9895, 97bitri 264 . . . . . . . . 9 ((𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9993, 98mpbi 220 . . . . . . . 8 (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10099breq2d 4816 . . . . . . 7 (𝑖 = 𝑛 → (𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
101100cbvralv 3310 . . . . . 6 (∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
102101rexbii 3179 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ ∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10389, 102sylib 208 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10438, 39rnmptbd2 39963 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦))
105103, 104mpbid 222 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦)
106 infxrre 12359 . . 3 ((ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⊆ ℝ ∧ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦) → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
10737, 41, 105, 106syl3anc 1477 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
108 fveq2 6352 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
109108reseq2d 5551 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
110109rneqd 5508 . . . . . . 7 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
111110supeq1d 8517 . . . . . 6 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
112111cbvmptv 4902 . . . . 5 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
113112rneqi 5507 . . . 4 ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
114113infeq1i 8549 . . 3 inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < )
115114a1i 11 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
1165, 107, 1153eqtrd 2798 1 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  ∃wrex 3051  Vcvv 3340   ⊆ wss 3715  ∅c0 4058   class class class wbr 4804   ↦ cmpt 4881  ran crn 5267   ↾ cres 5268   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  supcsup 8511  infcinf 8512  ℝcr 10127  ℝ*cxr 10265   < clt 10266   ≤ cle 10267  ℤcz 11569  ℤ≥cuz 11879  lim supclsp 14400 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-ico 12374  df-fz 12520  df-fl 12787  df-ceil 12788  df-limsup 14401 This theorem is referenced by:  supcnvlimsup  40475
 Copyright terms: Public domain W3C validator