Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuzmpt Structured version   Visualization version   GIF version

Theorem limsupubuzmpt 40463
 Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuzmpt.j 𝑗𝜑
limsupubuzmpt.z 𝑍 = (ℤ𝑀)
limsupubuzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
limsupubuzmpt.n (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)
Assertion
Ref Expression
limsupubuzmpt (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Distinct variable groups:   𝑥,𝐵   𝑗,𝑀   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐵(𝑗)   𝑀(𝑥)

Proof of Theorem limsupubuzmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfmpt1 4879 . . . 4 𝑗(𝑗𝑍𝐵)
2 limsupubuzmpt.z . . . 4 𝑍 = (ℤ𝑀)
3 limsupubuzmpt.j . . . . 5 𝑗𝜑
4 limsupubuzmpt.b . . . . 5 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
5 eqid 2770 . . . . 5 (𝑗𝑍𝐵) = (𝑗𝑍𝐵)
63, 4, 5fmptdf 6529 . . . 4 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
7 limsupubuzmpt.n . . . 4 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)
81, 2, 6, 7limsupubuz 40457 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦)
95a1i 11 . . . . . . 7 (𝜑 → (𝑗𝑍𝐵) = (𝑗𝑍𝐵))
109, 4fvmpt2d 6435 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1110breq1d 4794 . . . . 5 ((𝜑𝑗𝑍) → (((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦𝐵𝑦))
123, 11ralbida 3130 . . . 4 (𝜑 → (∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 𝐵𝑦))
1312rexbidv 3199 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦))
148, 13mpbid 222 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦)
15 breq2 4788 . . . 4 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
1615ralbidv 3134 . . 3 (𝑦 = 𝑥 → (∀𝑗𝑍 𝐵𝑦 ↔ ∀𝑗𝑍 𝐵𝑥))
1716cbvrexv 3320 . 2 (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
1814, 17sylib 208 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630  Ⅎwnf 1855   ∈ wcel 2144   ≠ wne 2942  ∀wral 3060  ∃wrex 3061   class class class wbr 4784   ↦ cmpt 4861  ‘cfv 6031  ℝcr 10136  +∞cpnf 10272   ≤ cle 10276  ℤ≥cuz 11887  lim supclsp 14408 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-ico 12385  df-fz 12533  df-fl 12800  df-ceil 12801  df-limsup 14409 This theorem is referenced by:  smflimsuplem2  41541  smflimsuplem5  41544
 Copyright terms: Public domain W3C validator