Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupresuz Structured version   Visualization version   GIF version

Theorem limsupresuz 40450
Description: If the real part of the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupresuz.m (𝜑𝑀 ∈ ℤ)
limsupresuz.z 𝑍 = (ℤ𝑀)
limsupresuz.f (𝜑𝐹𝑉)
limsupresuz.d (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)
Assertion
Ref Expression
limsupresuz (𝜑 → (lim sup‘(𝐹𝑍)) = (lim sup‘𝐹))

Proof of Theorem limsupresuz
StepHypRef Expression
1 rescom 5563 . . . . 5 ((𝐹𝑍) ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ 𝑍)
21fveq2i 6336 . . . 4 (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍))
32a1i 11 . . 3 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)))
4 relres 5566 . . . . . . . . . 10 Rel (𝐹 ↾ ℝ)
54a1i 11 . . . . . . . . 9 (𝜑 → Rel (𝐹 ↾ ℝ))
6 limsupresuz.d . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)
7 relssres 5577 . . . . . . . . 9 ((Rel (𝐹 ↾ ℝ) ∧ dom (𝐹 ↾ ℝ) ⊆ ℤ) → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ))
85, 6, 7syl2anc 573 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ))
98eqcomd 2777 . . . . . . 7 (𝜑 → (𝐹 ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ ℤ))
109reseq1d 5532 . . . . . 6 (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)) = (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)))
11 resres 5549 . . . . . . 7 (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞)))
1211a1i 11 . . . . . 6 (𝜑 → (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))))
13 limsupresuz.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
14 limsupresuz.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
1513, 14uzinico 40302 . . . . . . . 8 (𝜑𝑍 = (ℤ ∩ (𝑀[,)+∞)))
1615eqcomd 2777 . . . . . . 7 (𝜑 → (ℤ ∩ (𝑀[,)+∞)) = 𝑍)
1716reseq2d 5533 . . . . . 6 (𝜑 → ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) = ((𝐹 ↾ ℝ) ↾ 𝑍))
1810, 12, 173eqtrrd 2810 . . . . 5 (𝜑 → ((𝐹 ↾ ℝ) ↾ 𝑍) = ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)))
1918fveq2d 6337 . . . 4 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim sup‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))))
2013zred 11689 . . . . 5 (𝜑𝑀 ∈ ℝ)
21 eqid 2771 . . . . 5 (𝑀[,)+∞) = (𝑀[,)+∞)
22 limsupresuz.f . . . . . 6 (𝜑𝐹𝑉)
2322resexd 39841 . . . . 5 (𝜑 → (𝐹 ↾ ℝ) ∈ V)
2420, 21, 23limsupresico 40447 . . . 4 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) = (lim sup‘(𝐹 ↾ ℝ)))
2519, 24eqtrd 2805 . . 3 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim sup‘(𝐹 ↾ ℝ)))
263, 25eqtrd 2805 . 2 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘(𝐹 ↾ ℝ)))
2722resexd 39841 . . 3 (𝜑 → (𝐹𝑍) ∈ V)
2827limsupresre 40443 . 2 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘(𝐹𝑍)))
2922limsupresre 40443 . 2 (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹))
3026, 28, 293eqtr3d 2813 1 (𝜑 → (lim sup‘(𝐹𝑍)) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  Vcvv 3351  cin 3722  wss 3723  dom cdm 5250  cres 5252  Rel wrel 5255  cfv 6030  (class class class)co 6796  cr 10141  +∞cpnf 10277  cz 11584  cuz 11893  [,)cico 12382  lim supclsp 14409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-q 11997  df-ico 12386  df-limsup 14410
This theorem is referenced by:  limsupresuz2  40456
  Copyright terms: Public domain W3C validator