![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupref | Structured version Visualization version GIF version |
Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupref.j | ⊢ Ⅎ𝑗𝐹 |
limsupref.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsupref.s | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
limsupref.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
limsupref.b | ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) |
Ref | Expression |
---|---|
limsupref | ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupref.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | limsupref.s | . 2 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
3 | limsupref.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
4 | limsupref.b | . . 3 ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) | |
5 | breq2 4689 | . . . . . . . 8 ⊢ (𝑏 = 𝑦 → ((abs‘(𝐹‘𝑗)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑗)) ≤ 𝑦)) | |
6 | 5 | imbi2d 329 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → ((𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
7 | 6 | ralbidv 3015 | . . . . . 6 ⊢ (𝑏 = 𝑦 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
8 | 7 | rexbidv 3081 | . . . . 5 ⊢ (𝑏 = 𝑦 → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
9 | breq1 4688 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
10 | 9 | imbi1d 330 | . . . . . . . . 9 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
11 | 10 | ralbidv 3015 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
12 | nfv 1883 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) | |
13 | nfv 1883 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑥 | |
14 | nfcv 2793 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗abs | |
15 | limsupref.j | . . . . . . . . . . . . . 14 ⊢ Ⅎ𝑗𝐹 | |
16 | nfcv 2793 | . . . . . . . . . . . . . 14 ⊢ Ⅎ𝑗𝑥 | |
17 | 15, 16 | nffv 6236 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗(𝐹‘𝑥) |
18 | 14, 17 | nffv 6236 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑥)) |
19 | nfcv 2793 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
20 | nfcv 2793 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑦 | |
21 | 18, 19, 20 | nfbr 4732 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑥)) ≤ 𝑦 |
22 | 13, 21 | nfim 1865 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
23 | breq2 4689 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑥 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑥)) | |
24 | fveq2 6229 | . . . . . . . . . . . . 13 ⊢ (𝑗 = 𝑥 → (𝐹‘𝑗) = (𝐹‘𝑥)) | |
25 | 24 | fveq2d 6233 | . . . . . . . . . . . 12 ⊢ (𝑗 = 𝑥 → (abs‘(𝐹‘𝑗)) = (abs‘(𝐹‘𝑥))) |
26 | 25 | breq1d 4695 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑥 → ((abs‘(𝐹‘𝑗)) ≤ 𝑦 ↔ (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
27 | 23, 26 | imbi12d 333 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑥 → ((𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
28 | 12, 22, 27 | cbvral 3197 | . . . . . . . . 9 ⊢ (∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
29 | 28 | a1i 11 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
30 | 11, 29 | bitrd 268 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
31 | 30 | cbvrexv 3202 | . . . . . 6 ⊢ (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
32 | 31 | a1i 11 | . . . . 5 ⊢ (𝑏 = 𝑦 → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
33 | 8, 32 | bitrd 268 | . . . 4 ⊢ (𝑏 = 𝑦 → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
34 | 33 | cbvrexv 3202 | . . 3 ⊢ (∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
35 | 4, 34 | sylib 208 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
36 | 1, 2, 3, 35 | limsupre 40191 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 Ⅎwnfc 2780 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 class class class wbr 4685 ⟶wf 5922 ‘cfv 5926 supcsup 8387 ℝcr 9973 +∞cpnf 10109 ℝ*cxr 10111 < clt 10112 ≤ cle 10113 abscabs 14018 lim supclsp 14245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-ico 12219 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-limsup 14246 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |