Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre3mpt Structured version   Visualization version   GIF version

Theorem limsupre3mpt 40469
 Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller or equal than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger or equal than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre3mpt.p 𝑥𝜑
limsupre3mpt.a (𝜑𝐴 ⊆ ℝ)
limsupre3mpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupre3mpt (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))))
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝐵,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐵(𝑥)

Proof of Theorem limsupre3mpt
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 4899 . . 3 𝑥(𝑥𝐴𝐵)
2 limsupre3mpt.a . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre3mpt.p . . . 4 𝑥𝜑
4 limsupre3mpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
53, 4fmptd2f 39941 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ*)
61, 2, 5limsupre3 40468 . 2 (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤))))
7 eqid 2760 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
87a1i 11 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
98, 4fvmpt2d 6455 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
109breq2d 4816 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ 𝑤𝐵))
1110anbi2d 742 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ (𝑗𝑥𝑤𝐵)))
123, 11rexbida 3185 . . . . 5 (𝜑 → (∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵)))
1312ralbidv 3124 . . . 4 (𝜑 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵)))
1413rexbidv 3190 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ ∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵)))
159breq1d 4814 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤𝐵𝑤))
1615imbi2d 329 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ (𝑗𝑥𝐵𝑤)))
173, 16ralbida 3120 . . . . 5 (𝜑 → (∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)))
1817rexbidv 3190 . . . 4 (𝜑 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)))
1918rexbidv 3190 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)))
2014, 19anbi12d 749 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤)) ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤))))
21 breq1 4807 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤𝐵𝑦𝐵))
2221anbi2d 742 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑗𝑥𝑤𝐵) ↔ (𝑗𝑥𝑦𝐵)))
2322rexbidv 3190 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵)))
2423ralbidv 3124 . . . . . 6 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵)))
25 breq1 4807 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝑥𝑘𝑥))
2625anbi1d 743 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗𝑥𝑦𝐵) ↔ (𝑘𝑥𝑦𝐵)))
2726rexbidv 3190 . . . . . . . 8 (𝑗 = 𝑘 → (∃𝑥𝐴 (𝑗𝑥𝑦𝐵) ↔ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵)))
2827cbvralv 3310 . . . . . . 7 (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵))
2928a1i 11 . . . . . 6 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵)))
3024, 29bitrd 268 . . . . 5 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵)))
3130cbvrexv 3311 . . . 4 (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵))
32 breq2 4808 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐵𝑤𝐵𝑦))
3332imbi2d 329 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑗𝑥𝐵𝑤) ↔ (𝑗𝑥𝐵𝑦)))
3433ralbidv 3124 . . . . . . 7 (𝑤 = 𝑦 → (∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦)))
3534rexbidv 3190 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦)))
3625imbi1d 330 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗𝑥𝐵𝑦) ↔ (𝑘𝑥𝐵𝑦)))
3736ralbidv 3124 . . . . . . . 8 (𝑗 = 𝑘 → (∀𝑥𝐴 (𝑗𝑥𝐵𝑦) ↔ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
3837cbvrexv 3311 . . . . . . 7 (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))
3938a1i 11 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
4035, 39bitrd 268 . . . . 5 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
4140cbvrexv 3311 . . . 4 (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))
4231, 41anbi12i 735 . . 3 ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
4342a1i 11 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))))
446, 20, 433bitrd 294 1 (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632  Ⅎwnf 1857   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051   ⊆ wss 3715   class class class wbr 4804   ↦ cmpt 4881  ‘cfv 6049  ℝcr 10127  ℝ*cxr 10265   ≤ cle 10267  lim supclsp 14400 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-ico 12374  df-limsup 14401 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator