Step | Hyp | Ref
| Expression |
1 | | limsuppnfdlem.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
2 | | reex 10229 |
. . . . . 6
⊢ ℝ
∈ V |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
4 | | limsuppnfdlem.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
5 | 3, 4 | ssexd 4939 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
6 | 1, 5 | fexd 39817 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
7 | | limsuppnfdlem.g |
. . . 4
⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
8 | 7 | limsupval 14413 |
. . 3
⊢ (𝐹 ∈ V → (lim
sup‘𝐹) = inf(ran
𝐺, ℝ*,
< )) |
9 | 6, 8 | syl 17 |
. 2
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, <
)) |
10 | 7 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
11 | | limsuppnfdlem.u |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
12 | 11 | r19.21bi 3081 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
13 | 12 | r19.21bi 3081 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
14 | 13 | an32s 631 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
15 | 1 | ffund 6189 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → Fun 𝐹) |
16 | 15 | adantr 466 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → Fun 𝐹) |
17 | | simpr 471 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) |
18 | 1 | fdmd 39938 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → dom 𝐹 = 𝐴) |
19 | 18 | adantr 466 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → dom 𝐹 = 𝐴) |
20 | 17, 19 | eleqtrrd 2853 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ dom 𝐹) |
21 | 16, 20 | jca 501 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (Fun 𝐹 ∧ 𝑗 ∈ dom 𝐹)) |
22 | 21 | ad4ant13 1206 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → (Fun 𝐹 ∧ 𝑗 ∈ dom 𝐹)) |
23 | | simpllr 760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑘 ∈ ℝ) |
24 | 23 | rexrd 10291 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑘 ∈ ℝ*) |
25 | | pnfxr 10294 |
. . . . . . . . . . . . . . . . . . 19
⊢ +∞
∈ ℝ* |
26 | 25 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → +∞ ∈
ℝ*) |
27 | | ressxr 10285 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℝ
⊆ ℝ* |
28 | 27 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ℝ ⊆
ℝ*) |
29 | 4, 28 | sstrd 3762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
30 | 29 | adantr 466 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐴 ⊆
ℝ*) |
31 | 30, 17 | sseldd 3753 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ ℝ*) |
32 | 31 | ad4ant13 1206 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑗 ∈ ℝ*) |
33 | | simpr 471 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑘 ≤ 𝑗) |
34 | 4 | sselda 3752 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ ℝ) |
35 | | ltpnf 12159 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℝ → 𝑗 < +∞) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 < +∞) |
37 | 36 | ad4ant13 1206 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑗 < +∞) |
38 | 24, 26, 32, 33, 37 | elicod 12429 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑗 ∈ (𝑘[,)+∞)) |
39 | | funfvima 6635 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝐹 ∧ 𝑗 ∈ dom 𝐹) → (𝑗 ∈ (𝑘[,)+∞) → (𝐹‘𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))) |
40 | 22, 38, 39 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ∈ (𝐹 “ (𝑘[,)+∞))) |
41 | 1 | ffvelrnda 6502 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) |
42 | 41 | ad4ant13 1206 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ∈
ℝ*) |
43 | 40, 42 | elind 3949 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩
ℝ*)) |
44 | 43 | adantllr 698 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩
ℝ*)) |
45 | 44 | adantrr 696 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩
ℝ*)) |
46 | | simprr 756 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑥 ≤ (𝐹‘𝑗)) |
47 | | nfv 1995 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦 𝑥 ≤ (𝐹‘𝑗) |
48 | | breq2 4790 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐹‘𝑗) → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ (𝐹‘𝑗))) |
49 | 47, 48 | rspce 3455 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑗) ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)
∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥 ≤ 𝑦) |
50 | 45, 46, 49 | syl2anc 573 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥 ≤ 𝑦) |
51 | 50 | ex 397 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥 ≤ 𝑦)) |
52 | 51 | rexlimdva 3179 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥 ≤ 𝑦)) |
53 | 14, 52 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥 ≤ 𝑦) |
54 | 53 | ralrimiva 3115 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥 ≤ 𝑦) |
55 | | inss2 3982 |
. . . . . . . . . 10
⊢ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)
⊆ ℝ* |
56 | 55 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)
⊆ ℝ*) |
57 | | supxrunb3 40139 |
. . . . . . . . 9
⊢ (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)
⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥 ≤ 𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < ) = +∞)) |
58 | 56, 57 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (∀𝑥 ∈ ℝ ∃𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑥 ≤ 𝑦 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < ) = +∞)) |
59 | 54, 58 | mpbid 222 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < ) = +∞) |
60 | 59 | mpteq2dva 4878 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < )) = (𝑘 ∈ ℝ ↦
+∞)) |
61 | 10, 60 | eqtrd 2805 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑘 ∈ ℝ ↦
+∞)) |
62 | 61 | rneqd 5491 |
. . . 4
⊢ (𝜑 → ran 𝐺 = ran (𝑘 ∈ ℝ ↦
+∞)) |
63 | | eqid 2771 |
. . . . 5
⊢ (𝑘 ∈ ℝ ↦
+∞) = (𝑘 ∈
ℝ ↦ +∞) |
64 | 25 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → +∞ ∈
ℝ*) |
65 | | ren0 40142 |
. . . . . 6
⊢ ℝ
≠ ∅ |
66 | 65 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ≠
∅) |
67 | 63, 64, 66 | rnmptc 39873 |
. . . 4
⊢ (𝜑 → ran (𝑘 ∈ ℝ ↦ +∞) =
{+∞}) |
68 | 62, 67 | eqtrd 2805 |
. . 3
⊢ (𝜑 → ran 𝐺 = {+∞}) |
69 | 68 | infeq1d 8539 |
. 2
⊢ (𝜑 → inf(ran 𝐺, ℝ*, < ) =
inf({+∞}, ℝ*, < )) |
70 | | xrltso 12179 |
. . . . 5
⊢ < Or
ℝ* |
71 | 70, 25 | pm3.2i 447 |
. . . 4
⊢ ( < Or
ℝ* ∧ +∞ ∈ ℝ*) |
72 | | infsn 8566 |
. . . 4
⊢ (( <
Or ℝ* ∧ +∞ ∈ ℝ*) →
inf({+∞}, ℝ*, < ) = +∞) |
73 | 71, 72 | ax-mp 5 |
. . 3
⊢
inf({+∞}, ℝ*, < ) = +∞ |
74 | 73 | a1i 11 |
. 2
⊢ (𝜑 → inf({+∞},
ℝ*, < ) = +∞) |
75 | 9, 69, 74 | 3eqtrd 2809 |
1
⊢ (𝜑 → (lim sup‘𝐹) = +∞) |