Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnfd Structured version   Visualization version   GIF version

Theorem limsuppnfd 40452
 Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnfd.j 𝑗𝐹
limsuppnfd.a (𝜑𝐴 ⊆ ℝ)
limsuppnfd.f (𝜑𝐹:𝐴⟶ℝ*)
limsuppnfd.u (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
Assertion
Ref Expression
limsuppnfd (𝜑 → (lim sup‘𝐹) = +∞)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsuppnfd
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsuppnfd.a . 2 (𝜑𝐴 ⊆ ℝ)
2 limsuppnfd.f . 2 (𝜑𝐹:𝐴⟶ℝ*)
3 limsuppnfd.u . . 3 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4 breq1 4789 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
54anbi2d 614 . . . . . . 7 (𝑥 = 𝑦 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
65rexbidv 3200 . . . . . 6 (𝑥 = 𝑦 → (∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
76ralbidv 3135 . . . . 5 (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
8 breq1 4789 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
98anbi1d 615 . . . . . . . . 9 (𝑘 = 𝑖 → ((𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑖𝑗𝑦 ≤ (𝐹𝑗))))
109rexbidv 3200 . . . . . . . 8 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗))))
11 nfv 1995 . . . . . . . . . 10 𝑙(𝑖𝑗𝑦 ≤ (𝐹𝑗))
12 nfv 1995 . . . . . . . . . . 11 𝑗 𝑖𝑙
13 nfcv 2913 . . . . . . . . . . . 12 𝑗𝑦
14 nfcv 2913 . . . . . . . . . . . 12 𝑗
15 limsuppnfd.j . . . . . . . . . . . . 13 𝑗𝐹
16 nfcv 2913 . . . . . . . . . . . . 13 𝑗𝑙
1715, 16nffv 6339 . . . . . . . . . . . 12 𝑗(𝐹𝑙)
1813, 14, 17nfbr 4833 . . . . . . . . . . 11 𝑗 𝑦 ≤ (𝐹𝑙)
1912, 18nfan 1980 . . . . . . . . . 10 𝑗(𝑖𝑙𝑦 ≤ (𝐹𝑙))
20 breq2 4790 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝑖𝑗𝑖𝑙))
21 fveq2 6332 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
2221breq2d 4798 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑙)))
2320, 22anbi12d 616 . . . . . . . . . 10 (𝑗 = 𝑙 → ((𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
2411, 19, 23cbvrex 3317 . . . . . . . . 9 (∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
2524a1i 11 . . . . . . . 8 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
2610, 25bitrd 268 . . . . . . 7 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
2726cbvralv 3320 . . . . . 6 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
2827a1i 11 . . . . 5 (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
297, 28bitrd 268 . . . 4 (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
3029cbvralv 3320 . . 3 (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
313, 30sylib 208 . 2 (𝜑 → ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
32 eqid 2771 . 2 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
331, 2, 31, 32limsuppnfdlem 40451 1 (𝜑 → (lim sup‘𝐹) = +∞)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631  Ⅎwnfc 2900  ∀wral 3061  ∃wrex 3062   ∩ cin 3722   ⊆ wss 3723   class class class wbr 4786   ↦ cmpt 4863   “ cima 5252  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793  supcsup 8502  ℝcr 10137  +∞cpnf 10273  ℝ*cxr 10275   < clt 10276   ≤ cle 10277  [,)cico 12382  lim supclsp 14409 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-ico 12386  df-limsup 14410 This theorem is referenced by:  limsupub  40454  limsuppnflem  40460
 Copyright terms: Public domain W3C validator