![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuppnfd | Structured version Visualization version GIF version |
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsuppnfd.j | ⊢ Ⅎ𝑗𝐹 |
limsuppnfd.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsuppnfd.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
limsuppnfd.u | ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
Ref | Expression |
---|---|
limsuppnfd | ⊢ (𝜑 → (lim sup‘𝐹) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsuppnfd.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | limsuppnfd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
3 | limsuppnfd.u | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) | |
4 | breq1 4789 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑗))) | |
5 | 4 | anbi2d 614 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
6 | 5 | rexbidv 3200 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
7 | 6 | ralbidv 3135 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
8 | breq1 4789 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
9 | 8 | anbi1d 615 | . . . . . . . . 9 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
10 | 9 | rexbidv 3200 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
11 | nfv 1995 | . . . . . . . . . 10 ⊢ Ⅎ𝑙(𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) | |
12 | nfv 1995 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑙 | |
13 | nfcv 2913 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑦 | |
14 | nfcv 2913 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
15 | limsuppnfd.j | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
16 | nfcv 2913 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
17 | 15, 16 | nffv 6339 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
18 | 13, 14, 17 | nfbr 4833 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑙) |
19 | 12, 18 | nfan 1980 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) |
20 | breq2 4790 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑙 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑙)) | |
21 | fveq2 6332 | . . . . . . . . . . . 12 ⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) | |
22 | 21 | breq2d 4798 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑙 → (𝑦 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑙))) |
23 | 20, 22 | anbi12d 616 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑙 → ((𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
24 | 11, 19, 23 | cbvrex 3317 | . . . . . . . . 9 ⊢ (∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
25 | 24 | a1i 11 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
26 | 10, 25 | bitrd 268 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
27 | 26 | cbvralv 3320 | . . . . . 6 ⊢ (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
28 | 27 | a1i 11 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
29 | 7, 28 | bitrd 268 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
30 | 29 | cbvralv 3320 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
31 | 3, 30 | sylib 208 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
32 | eqid 2771 | . 2 ⊢ (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
33 | 1, 2, 31, 32 | limsuppnfdlem 40451 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 Ⅎwnfc 2900 ∀wral 3061 ∃wrex 3062 ∩ cin 3722 ⊆ wss 3723 class class class wbr 4786 ↦ cmpt 4863 “ cima 5252 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 supcsup 8502 ℝcr 10137 +∞cpnf 10273 ℝ*cxr 10275 < clt 10276 ≤ cle 10277 [,)cico 12382 lim supclsp 14409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-ico 12386 df-limsup 14410 |
This theorem is referenced by: limsupub 40454 limsuppnflem 40460 |
Copyright terms: Public domain | W3C validator |