Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnf Structured version   Visualization version   GIF version

Theorem limsupmnf 40271
 Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnf.j 𝑗𝐹
limsupmnf.a (𝜑𝐴 ⊆ ℝ)
limsupmnf.f (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupmnf (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsupmnf
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupmnf.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 limsupmnf.f . . 3 (𝜑𝐹:𝐴⟶ℝ*)
3 eqid 2651 . . 3 (𝑖 ∈ ℝ ↦ sup((𝐹 “ (𝑖[,)+∞)), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup((𝐹 “ (𝑖[,)+∞)), ℝ*, < ))
41, 2, 3limsupmnflem 40270 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦)))
5 breq2 4689 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
65imbi2d 329 . . . . . . 7 (𝑦 = 𝑥 → ((𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥)))
76ralbidv 3015 . . . . . 6 (𝑦 = 𝑥 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥)))
87rexbidv 3081 . . . . 5 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥)))
9 breq1 4688 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖𝑙𝑘𝑙))
109imbi1d 330 . . . . . . . . 9 (𝑖 = 𝑘 → ((𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥)))
1110ralbidv 3015 . . . . . . . 8 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥)))
12 nfv 1883 . . . . . . . . . . 11 𝑗 𝑘𝑙
13 limsupmnf.j . . . . . . . . . . . . 13 𝑗𝐹
14 nfcv 2793 . . . . . . . . . . . . 13 𝑗𝑙
1513, 14nffv 6236 . . . . . . . . . . . 12 𝑗(𝐹𝑙)
16 nfcv 2793 . . . . . . . . . . . 12 𝑗
17 nfcv 2793 . . . . . . . . . . . 12 𝑗𝑥
1815, 16, 17nfbr 4732 . . . . . . . . . . 11 𝑗(𝐹𝑙) ≤ 𝑥
1912, 18nfim 1865 . . . . . . . . . 10 𝑗(𝑘𝑙 → (𝐹𝑙) ≤ 𝑥)
20 nfv 1883 . . . . . . . . . 10 𝑙(𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)
21 breq2 4689 . . . . . . . . . . 11 (𝑙 = 𝑗 → (𝑘𝑙𝑘𝑗))
22 fveq2 6229 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
2322breq1d 4695 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
2421, 23imbi12d 333 . . . . . . . . . 10 (𝑙 = 𝑗 → ((𝑘𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
2519, 20, 24cbvral 3197 . . . . . . . . 9 (∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2625a1i 11 . . . . . . . 8 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
2711, 26bitrd 268 . . . . . . 7 (𝑖 = 𝑘 → (∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
2827cbvrexv 3202 . . . . . 6 (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2928a1i 11 . . . . 5 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
308, 29bitrd 268 . . . 4 (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3130cbvralv 3201 . . 3 (∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
3231a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙𝐴 (𝑖𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
334, 32bitrd 268 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523  Ⅎwnfc 2780  ∀wral 2941  ∃wrex 2942   ⊆ wss 3607   class class class wbr 4685   ↦ cmpt 4762   “ cima 5146  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  supcsup 8387  ℝcr 9973  +∞cpnf 10109  -∞cmnf 10110  ℝ*cxr 10111   < clt 10112   ≤ cle 10113  [,)cico 12215  lim supclsp 14245 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-ico 12219  df-limsup 14246 This theorem is referenced by:  limsupre2lem  40274  limsupmnfuzlem  40276
 Copyright terms: Public domain W3C validator