Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuplt2 Structured version   Visualization version   GIF version

Theorem limsuplt2 40497
Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsuplt2.1 (𝜑𝐵 ⊆ ℝ)
limsuplt2.2 (𝜑𝐹:𝐵⟶ℝ*)
limsuplt2.3 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
limsuplt2 (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem limsuplt2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsuplt2.1 . . 3 (𝜑𝐵 ⊆ ℝ)
2 limsuplt2.2 . . 3 (𝜑𝐹:𝐵⟶ℝ*)
3 limsuplt2.3 . . 3 (𝜑𝐴 ∈ ℝ*)
4 eqid 2770 . . . 4 (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
54limsuplt 14417 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴))
61, 2, 3, 5syl3anc 1475 . 2 (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴))
7 oveq1 6799 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗[,)+∞) = (𝑖[,)+∞))
87imaeq2d 5607 . . . . . . 7 (𝑗 = 𝑖 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑖[,)+∞)))
98ineq1d 3962 . . . . . 6 (𝑗 = 𝑖 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
109supeq1d 8507 . . . . 5 (𝑗 = 𝑖 → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
11 simpr 471 . . . . 5 ((𝜑𝑖 ∈ ℝ) → 𝑖 ∈ ℝ)
12 xrltso 12178 . . . . . . 7 < Or ℝ*
1312supex 8524 . . . . . 6 sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
1413a1i 11 . . . . 5 ((𝜑𝑖 ∈ ℝ) → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
154, 10, 11, 14fvmptd3 39959 . . . 4 ((𝜑𝑖 ∈ ℝ) → ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
1615breq1d 4794 . . 3 ((𝜑𝑖 ∈ ℝ) → (((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴 ↔ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
1716rexbidva 3196 . 2 (𝜑 → (∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴 ↔ ∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
18 oveq1 6799 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖[,)+∞) = (𝑘[,)+∞))
1918imaeq2d 5607 . . . . . . 7 (𝑖 = 𝑘 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
2019ineq1d 3962 . . . . . 6 (𝑖 = 𝑘 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
2120supeq1d 8507 . . . . 5 (𝑖 = 𝑘 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
2221breq1d 4794 . . . 4 (𝑖 = 𝑘 → (sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
2322cbvrexv 3320 . . 3 (∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)
2423a1i 11 . 2 (𝜑 → (∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
256, 17, 243bitrd 294 1 (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wrex 3061  Vcvv 3349  cin 3720  wss 3721   class class class wbr 4784  cmpt 4861  cima 5252  wf 6027  cfv 6031  (class class class)co 6792  supcsup 8501  cr 10136  +∞cpnf 10272  *cxr 10274   < clt 10275  [,)cico 12381  lim supclsp 14408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-limsup 14409
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator