![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuplesup | Structured version Visualization version GIF version |
Description: An upper bound for the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsuplesup.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
limsuplesup.2 | ⊢ (𝜑 → 𝐾 ∈ ℝ) |
Ref | Expression |
---|---|
limsuplesup | ⊢ (𝜑 → (lim sup‘𝐹) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsuplesup.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | eqid 2771 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
3 | 2 | limsupval 14413 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
5 | nfv 1995 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
6 | inss2 3982 | . . . . 5 ⊢ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
8 | 7 | supxrcld 39811 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
9 | limsuplesup.2 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℝ) | |
10 | inss2 3982 | . . . . 5 ⊢ ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
12 | 11 | supxrcld 39811 | . . 3 ⊢ (𝜑 → sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
13 | oveq1 6800 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑘[,)+∞) = (𝐾[,)+∞)) | |
14 | 13 | imaeq2d 5607 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝐾[,)+∞))) |
15 | 14 | ineq1d 3964 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*)) |
16 | 15 | supeq1d 8508 | . . 3 ⊢ (𝑘 = 𝐾 → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
17 | 5, 8, 9, 12, 16 | infxrlbrnmpt2 40153 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
18 | 4, 17 | eqbrtrd 4808 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 ⊆ wss 3723 class class class wbr 4786 ↦ cmpt 4863 ran crn 5250 “ cima 5252 ‘cfv 6031 (class class class)co 6793 supcsup 8502 infcinf 8503 ℝcr 10137 +∞cpnf 10273 ℝ*cxr 10275 < clt 10276 ≤ cle 10277 [,)cico 12382 lim supclsp 14409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-limsup 14410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |