![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupgt | Structured version Visualization version GIF version |
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupgt.k | ⊢ Ⅎ𝑘𝐹 |
limsupgt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupgt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupgt.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
limsupgt.r | ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
limsupgt.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
Ref | Expression |
---|---|
limsupgt | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupgt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | limsupgt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | limsupgt.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | limsupgt.r | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | |
5 | limsupgt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
6 | 1, 2, 3, 4, 5 | limsupgtlem 40531 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹)) |
7 | limsupgt.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
8 | nfcv 2903 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
9 | 7, 8 | nffv 6361 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
10 | nfcv 2903 | . . . . . . . 8 ⊢ Ⅎ𝑘 − | |
11 | nfcv 2903 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑋 | |
12 | 9, 10, 11 | nfov 6841 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑙) − 𝑋) |
13 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑘 < | |
14 | nfcv 2903 | . . . . . . . 8 ⊢ Ⅎ𝑘lim sup | |
15 | 14, 7 | nffv 6361 | . . . . . . 7 ⊢ Ⅎ𝑘(lim sup‘𝐹) |
16 | 12, 13, 15 | nfbr 4852 | . . . . . 6 ⊢ Ⅎ𝑘((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) |
17 | nfv 1993 | . . . . . 6 ⊢ Ⅎ𝑙((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹) | |
18 | fveq2 6354 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
19 | 18 | oveq1d 6830 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) − 𝑋) = ((𝐹‘𝑘) − 𝑋)) |
20 | 19 | breq1d 4815 | . . . . . 6 ⊢ (𝑙 = 𝑘 → (((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
21 | 16, 17, 20 | cbvral 3307 | . . . . 5 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
23 | fveq2 6354 | . . . . 5 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
24 | 23 | raleqdv 3284 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
25 | 22, 24 | bitrd 268 | . . 3 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
26 | 25 | cbvrexv 3312 | . 2 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
27 | 6, 26 | sylib 208 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2140 Ⅎwnfc 2890 ∀wral 3051 ∃wrex 3052 class class class wbr 4805 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ℝcr 10148 < clt 10287 − cmin 10479 ℤcz 11590 ℤ≥cuz 11900 ℝ+crp 12046 lim supclsp 14421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-inf 8517 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-xadd 12161 df-ico 12395 df-fz 12541 df-fzo 12681 df-fl 12808 df-ceil 12809 df-limsup 14422 |
This theorem is referenced by: liminfltlem 40558 liminflimsupclim 40561 |
Copyright terms: Public domain | W3C validator |