Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgord Structured version   Visualization version   GIF version

Theorem limsupgord 14423
 Description: Ordering property of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Assertion
Ref Expression
limsupgord ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))

Proof of Theorem limsupgord
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexr 10298 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
213ad2ant1 1128 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
3 simp3 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
4 df-ico 12395 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
5 xrletr 12203 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐵𝐵𝑤) → 𝐴𝑤))
64, 4, 5ixxss1 12407 . . . . 5 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
72, 3, 6syl2anc 696 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
8 imass2 5660 . . . 4 ((𝐵[,)+∞) ⊆ (𝐴[,)+∞) → (𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)))
9 ssrin 3982 . . . 4 ((𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
107, 8, 93syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
11 inss2 3978 . . . . . 6 ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ*
12 supxrcl 12359 . . . . . 6 (((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1311, 12ax-mp 5 . . . . 5 sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
14 xrleid 12197 . . . . 5 (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ* → sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
1513, 14ax-mp 5 . . . 4 sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )
16 supxrleub 12370 . . . . 5 ((((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
1711, 13, 16mp2an 710 . . . 4 (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
1815, 17mpbi 220 . . 3 𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )
19 ssralv 3808 . . 3 (((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) → ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
2010, 18, 19mpisyl 21 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
21 inss2 3978 . . 3 ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ*
22 supxrleub 12370 . . 3 ((((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
2321, 13, 22mp2an 710 . 2 (sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
2420, 23sylibr 224 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1072   ∈ wcel 2140  ∀wral 3051   ∩ cin 3715   ⊆ wss 3716   class class class wbr 4805   “ cima 5270  (class class class)co 6815  supcsup 8514  ℝcr 10148  +∞cpnf 10284  ℝ*cxr 10286   < clt 10287   ≤ cle 10288  [,)cico 12391 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-po 5188  df-so 5189  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-1st 7335  df-2nd 7336  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-sup 8516  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-ico 12395 This theorem is referenced by:  limsupval2  14431
 Copyright terms: Public domain W3C validator