Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmptf Structured version   Visualization version   GIF version

Theorem limsupequzmptf 40281
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmptf.j 𝑗𝜑
limsupequzmptf.o 𝑗𝐴
limsupequzmptf.p 𝑗𝐵
limsupequzmptf.m (𝜑𝑀 ∈ ℤ)
limsupequzmptf.n (𝜑𝑁 ∈ ℤ)
limsupequzmptf.a 𝐴 = (ℤ𝑀)
limsupequzmptf.b 𝐵 = (ℤ𝑁)
limsupequzmptf.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmptf.d ((𝜑𝑗𝐵) → 𝐶𝑊)
Assertion
Ref Expression
limsupequzmptf (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝑗,𝑉   𝑗,𝑊
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝑀(𝑗)   𝑁(𝑗)

Proof of Theorem limsupequzmptf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1883 . . 3 𝑘𝜑
2 limsupequzmptf.m . . 3 (𝜑𝑀 ∈ ℤ)
3 limsupequzmptf.n . . 3 (𝜑𝑁 ∈ ℤ)
4 limsupequzmptf.a . . 3 𝐴 = (ℤ𝑀)
5 limsupequzmptf.b . . 3 𝐵 = (ℤ𝑁)
6 limsupequzmptf.j . . . . . 6 𝑗𝜑
7 limsupequzmptf.o . . . . . . 7 𝑗𝐴
87nfcri 2787 . . . . . 6 𝑗 𝑘𝐴
96, 8nfan 1868 . . . . 5 𝑗(𝜑𝑘𝐴)
10 nfcsb1v 3582 . . . . . 6 𝑗𝑘 / 𝑗𝐶
11 nfcv 2793 . . . . . 6 𝑗𝑉
1210, 11nfel 2806 . . . . 5 𝑗𝑘 / 𝑗𝐶𝑉
139, 12nfim 1865 . . . 4 𝑗((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)
14 eleq1 2718 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
1514anbi2d 740 . . . . 5 (𝑗 = 𝑘 → ((𝜑𝑗𝐴) ↔ (𝜑𝑘𝐴)))
16 csbeq1a 3575 . . . . . 6 (𝑗 = 𝑘𝐶 = 𝑘 / 𝑗𝐶)
1716eleq1d 2715 . . . . 5 (𝑗 = 𝑘 → (𝐶𝑉𝑘 / 𝑗𝐶𝑉))
1815, 17imbi12d 333 . . . 4 (𝑗 = 𝑘 → (((𝜑𝑗𝐴) → 𝐶𝑉) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)))
19 limsupequzmptf.c . . . 4 ((𝜑𝑗𝐴) → 𝐶𝑉)
2013, 18, 19chvar 2298 . . 3 ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐶𝑉)
21 limsupequzmptf.p . . . . . . 7 𝑗𝐵
2221nfcri 2787 . . . . . 6 𝑗 𝑘𝐵
236, 22nfan 1868 . . . . 5 𝑗(𝜑𝑘𝐵)
24 nfcv 2793 . . . . . 6 𝑗𝑊
2510, 24nfel 2806 . . . . 5 𝑗𝑘 / 𝑗𝐶𝑊
2623, 25nfim 1865 . . . 4 𝑗((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)
27 eleq1 2718 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
2827anbi2d 740 . . . . 5 (𝑗 = 𝑘 → ((𝜑𝑗𝐵) ↔ (𝜑𝑘𝐵)))
2916eleq1d 2715 . . . . 5 (𝑗 = 𝑘 → (𝐶𝑊𝑘 / 𝑗𝐶𝑊))
3028, 29imbi12d 333 . . . 4 (𝑗 = 𝑘 → (((𝜑𝑗𝐵) → 𝐶𝑊) ↔ ((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)))
31 limsupequzmptf.d . . . 4 ((𝜑𝑗𝐵) → 𝐶𝑊)
3226, 30, 31chvar 2298 . . 3 ((𝜑𝑘𝐵) → 𝑘 / 𝑗𝐶𝑊)
331, 2, 3, 4, 5, 20, 32limsupequzmpt 40279 . 2 (𝜑 → (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶)))
34 nfcv 2793 . . . . 5 𝑘𝐴
35 nfcv 2793 . . . . 5 𝑘𝐶
367, 34, 35, 10, 16cbvmptf 4781 . . . 4 (𝑗𝐴𝐶) = (𝑘𝐴𝑘 / 𝑗𝐶)
3736fveq2i 6232 . . 3 (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶))
3837a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑘𝐴𝑘 / 𝑗𝐶)))
39 nfcv 2793 . . . . 5 𝑘𝐵
4021, 39, 35, 10, 16cbvmptf 4781 . . . 4 (𝑗𝐵𝐶) = (𝑘𝐵𝑘 / 𝑗𝐶)
4140fveq2i 6232 . . 3 (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶))
4241a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑘𝐵𝑘 / 𝑗𝐶)))
4333, 38, 423eqtr4d 2695 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wnf 1748  wcel 2030  wnfc 2780  csb 3566  cmpt 4762  cfv 5926  cz 11415  cuz 11725  lim supclsp 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-ico 12219  df-limsup 14246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator