Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzlem Structured version   Visualization version   GIF version

Theorem limsupequzlem 40453
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzlem.1 𝑘𝜑
limsupequzlem.2 (𝜑𝑀 ∈ ℤ)
limsupequzlem.4 (𝜑𝐹 Fn (ℤ𝑀))
limsupequzlem.5 (𝜑𝑁 ∈ ℤ)
limsupequzlem.6 (𝜑𝐺 Fn (ℤ𝑁))
limsupequzlem.7 (𝜑𝐾 ∈ ℤ)
limsupequzlem.8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
limsupequzlem (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem limsupequzlem
StepHypRef Expression
1 limsupequzlem.1 . . . . 5 𝑘𝜑
2 eqid 2756 . . . . . . 7 (ℤ𝐾) = (ℤ𝐾)
3 limsupequzlem.7 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
43adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℤ)
5 eluzelz 11885 . . . . . . . 8 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈ ℤ)
65adantl 473 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℤ)
73zred 11670 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
87adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℝ)
98rexrd 10277 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℝ*)
10 zssxr 40115 . . . . . . . . . 10 ℤ ⊆ ℝ*
11 limsupequzlem.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
12 limsupequzlem.5 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
13 tpssi 4510 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → {𝑀, 𝑁, 𝐾} ⊆ ℤ)
1411, 12, 3, 13syl3anc 1477 . . . . . . . . . . 11 (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℤ)
15 xrltso 12163 . . . . . . . . . . . . 13 < Or ℝ*
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → < Or ℝ*)
17 tpfi 8397 . . . . . . . . . . . . 13 {𝑀, 𝑁, 𝐾} ∈ Fin
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ∈ Fin)
1911tpnzd 4453 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ≠ ∅)
2010a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℤ ⊆ ℝ*)
2114, 20sstrd 3750 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℝ*)
22 fisupcl 8536 . . . . . . . . . . . 12 (( < Or ℝ* ∧ ({𝑀, 𝑁, 𝐾} ∈ Fin ∧ {𝑀, 𝑁, 𝐾} ≠ ∅ ∧ {𝑀, 𝑁, 𝐾} ⊆ ℝ*)) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾})
2316, 18, 19, 21, 22syl13anc 1479 . . . . . . . . . . 11 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾})
2414, 23sseldd 3741 . . . . . . . . . 10 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℤ)
2510, 24sseldi 3738 . . . . . . . . 9 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℝ*)
2625adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℝ*)
27 eluzelre 11886 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈ ℝ)
2827adantl 473 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℝ)
2928rexrd 10277 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℝ*)
30 tpid3g 4445 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ {𝑀, 𝑁, 𝐾})
313, 30syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ {𝑀, 𝑁, 𝐾})
32 eqid 2756 . . . . . . . . . 10 sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) = sup({𝑀, 𝑁, 𝐾}, ℝ*, < )
3321, 31, 32supxrubd 39792 . . . . . . . . 9 (𝜑𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
3433adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
35 eluzle 11888 . . . . . . . . 9 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘)
3635adantl 473 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘)
379, 26, 29, 34, 36xrletrd 12182 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾𝑘)
382, 4, 6, 37eluzd 40129 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ (ℤ𝐾))
39 limsupequzlem.8 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
4038, 39syldan 488 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → (𝐹𝑘) = (𝐺𝑘))
411, 40ralrimia 39810 . . . 4 (𝜑 → ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘))
42 limsupequzlem.4 . . . . 5 (𝜑𝐹 Fn (ℤ𝑀))
43 limsupequzlem.6 . . . . 5 (𝜑𝐺 Fn (ℤ𝑁))
44 eqid 2756 . . . . . . 7 (ℤ𝑀) = (ℤ𝑀)
45 tpid1g 39817 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁, 𝐾})
4611, 45syl 17 . . . . . . . 8 (𝜑𝑀 ∈ {𝑀, 𝑁, 𝐾})
4721, 46, 32supxrubd 39792 . . . . . . 7 (𝜑𝑀 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
4844, 11, 24, 47eluzd 40129 . . . . . 6 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑀))
49 uzss 11896 . . . . . 6 (sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑀) → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀))
5048, 49syl 17 . . . . 5 (𝜑 → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀))
51 eqid 2756 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
52 tpid2g 39811 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁, 𝐾})
5312, 52syl 17 . . . . . . . 8 (𝜑𝑁 ∈ {𝑀, 𝑁, 𝐾})
5421, 53, 32supxrubd 39792 . . . . . . 7 (𝜑𝑁 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
5551, 12, 24, 54eluzd 40129 . . . . . 6 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑁))
56 uzss 11896 . . . . . 6 (sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑁) → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))
5755, 56syl 17 . . . . 5 (𝜑 → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))
58 fvreseq0 6476 . . . . 5 (((𝐹 Fn (ℤ𝑀) ∧ 𝐺 Fn (ℤ𝑁)) ∧ ((ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀) ∧ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))) → ((𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔ ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘)))
5942, 43, 50, 57, 58syl22anc 1478 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔ ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘)))
6041, 59mpbird 247 . . 3 (𝜑 → (𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))))
6160fveq2d 6352 . 2 (𝜑 → (lim sup‘(𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘(𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))))
62 eqid 2756 . . 3 (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) = (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
63 fvexd 6360 . . . 4 (𝜑 → (ℤ𝑀) ∈ V)
6442, 63fnexd 39818 . . 3 (𝜑𝐹 ∈ V)
6542fndmd 39936 . . . 4 (𝜑 → dom 𝐹 = (ℤ𝑀))
66 uzssz 11895 . . . 4 (ℤ𝑀) ⊆ ℤ
6765, 66syl6eqss 3792 . . 3 (𝜑 → dom 𝐹 ⊆ ℤ)
6824, 62, 64, 67limsupresuz2 40440 . 2 (𝜑 → (lim sup‘(𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘𝐹))
69 fvexd 6360 . . . 4 (𝜑 → (ℤ𝑁) ∈ V)
7043, 69fnexd 39818 . . 3 (𝜑𝐺 ∈ V)
7143fndmd 39936 . . . 4 (𝜑 → dom 𝐺 = (ℤ𝑁))
72 uzssz 11895 . . . 4 (ℤ𝑁) ⊆ ℤ
7371, 72syl6eqss 3792 . . 3 (𝜑 → dom 𝐺 ⊆ ℤ)
7424, 62, 70, 73limsupresuz2 40440 . 2 (𝜑 → (lim sup‘(𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘𝐺))
7561, 68, 743eqtr3d 2798 1 (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1628  wnf 1853  wcel 2135  wne 2928  wral 3046  Vcvv 3336  wss 3711  c0 4054  {ctp 4321   class class class wbr 4800   Or wor 5182  dom cdm 5262  cres 5264   Fn wfn 6040  cfv 6045  Fincfn 8117  supcsup 8507  cr 10123  *cxr 10261   < clt 10262  cle 10263  cz 11565  cuz 11875  lim supclsp 14396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-inf 8510  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-n0 11481  df-z 11566  df-uz 11876  df-q 11978  df-ico 12370  df-limsup 14397
This theorem is referenced by:  limsupequz  40454
  Copyright terms: Public domain W3C validator