![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupbnd1f | Structured version Visualization version GIF version |
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupbnd1f.1 | ⊢ Ⅎ𝑗𝐹 |
limsupbnd1f.2 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
limsupbnd1f.3 | ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) |
limsupbnd1f.4 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
limsupbnd1f.5 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) |
Ref | Expression |
---|---|
limsupbnd1f | ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupbnd1f.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
2 | limsupbnd1f.3 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) | |
3 | limsupbnd1f.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | limsupbnd1f.5 | . . 3 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) | |
5 | breq1 4688 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
6 | 5 | imbi1d 330 | . . . . . 6 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
7 | 6 | ralbidv 3015 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
8 | nfv 1883 | . . . . . . 7 ⊢ Ⅎ𝑙(𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) | |
9 | nfv 1883 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑙 | |
10 | limsupbnd1f.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝐹 | |
11 | nfcv 2793 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝑙 | |
12 | 10, 11 | nffv 6236 | . . . . . . . . 9 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
13 | nfcv 2793 | . . . . . . . . 9 ⊢ Ⅎ𝑗 ≤ | |
14 | nfcv 2793 | . . . . . . . . 9 ⊢ Ⅎ𝑗𝐴 | |
15 | 12, 13, 14 | nfbr 4732 | . . . . . . . 8 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝐴 |
16 | 9, 15 | nfim 1865 | . . . . . . 7 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴) |
17 | breq2 4689 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑙)) | |
18 | fveq2 6229 | . . . . . . . . 9 ⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) | |
19 | 18 | breq1d 4695 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → ((𝐹‘𝑗) ≤ 𝐴 ↔ (𝐹‘𝑙) ≤ 𝐴)) |
20 | 17, 19 | imbi12d 333 | . . . . . . 7 ⊢ (𝑗 = 𝑙 → ((𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
21 | 8, 16, 20 | cbvral 3197 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
22 | 21 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
23 | 7, 22 | bitrd 268 | . . . 4 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
24 | 23 | cbvrexv 3202 | . . 3 ⊢ (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
25 | 4, 24 | sylib 208 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
26 | 1, 2, 3, 25 | limsupbnd1 14257 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 Ⅎwnfc 2780 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 class class class wbr 4685 ⟶wf 5922 ‘cfv 5926 ℝcr 9973 ℝ*cxr 10111 ≤ cle 10113 lim supclsp 14245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-ico 12219 df-limsup 14246 |
This theorem is referenced by: limsuppnflem 40260 |
Copyright terms: Public domain | W3C validator |