Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsup10exlem Structured version   Visualization version   GIF version

Theorem limsup10exlem 40516
Description: The range of the given function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsup10exlem.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
limsup10exlem.2 (𝜑𝐾 ∈ ℝ)
Assertion
Ref Expression
limsup10exlem (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
Distinct variable groups:   𝑛,𝐾   𝜑,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem limsup10exlem
StepHypRef Expression
1 c0ex 10235 . . . . . . 7 0 ∈ V
21prid1 4431 . . . . . 6 0 ∈ {0, 1}
3 1re 10240 . . . . . . . 8 1 ∈ ℝ
43elexi 3362 . . . . . . 7 1 ∈ V
54prid2 4432 . . . . . 6 1 ∈ {0, 1}
62, 5ifcli 39844 . . . . 5 if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}
76a1i 11 . . . 4 ((𝜑𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ {0, 1})
87ralrimiva 3114 . . 3 (𝜑 → ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1})
9 nfv 1994 . . . 4 𝑛𝜑
101, 4ifex 4293 . . . . 5 if(2 ∥ 𝑛, 0, 1) ∈ V
1110a1i 11 . . . 4 ((𝜑𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ V)
12 limsup10exlem.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
139, 11, 12imassmpt 39993 . . 3 (𝜑 → ((𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1} ↔ ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}))
148, 13mpbird 247 . 2 (𝜑 → (𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1})
15 limsup10exlem.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
1615ceilcld 40189 . . . . . . . . 9 (𝜑 → (⌈‘𝐾) ∈ ℤ)
17 1zzd 11609 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
1816, 17ifcld 4268 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
1918adantr 466 . . . . . . 7 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
20 simpr 471 . . . . . . 7 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
21 2teven 15286 . . . . . . 7 ((if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ ∧ 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛)
2219, 20, 21syl2anc 565 . . . . . 6 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛)
2322iftrued 4231 . . . . 5 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(2 ∥ 𝑛, 0, 1) = 0)
24 2nn 11386 . . . . . . 7 2 ∈ ℕ
2524a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
26 eqid 2770 . . . . . . . 8 (ℤ‘1) = (ℤ‘1)
273a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ∈ ℝ)
2815adantr 466 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
2916zred 11683 . . . . . . . . . . . 12 (𝜑 → (⌈‘𝐾) ∈ ℝ)
3029adantr 466 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → (⌈‘𝐾) ∈ ℝ)
31 simpr 471 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ 𝐾)
3215ceilged 40183 . . . . . . . . . . . 12 (𝜑𝐾 ≤ (⌈‘𝐾))
3332adantr 466 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ (⌈‘𝐾))
3427, 28, 30, 31, 33letrd 10395 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ (⌈‘𝐾))
35 iftrue 4229 . . . . . . . . . . 11 (1 ≤ 𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾))
3635adantl 467 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾))
3734, 36breqtrrd 4812 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
383leidi 10763 . . . . . . . . . . 11 1 ≤ 1
3938a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ 1)
40 iffalse 4232 . . . . . . . . . . 11 (¬ 1 ≤ 𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1)
4140adantl 467 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1)
4239, 41breqtrrd 4812 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
4337, 42pm2.61dan 796 . . . . . . . 8 (𝜑 → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
4426, 17, 18, 43eluzd 40145 . . . . . . 7 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ (ℤ‘1))
45 nnuz 11924 . . . . . . 7 ℕ = (ℤ‘1)
4644, 45syl6eleqr 2860 . . . . . 6 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℕ)
4725, 46nnmulcld 11269 . . . . 5 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℕ)
481a1i 11 . . . . 5 (𝜑 → 0 ∈ V)
4912, 23, 47, 48fvmptd2 39957 . . . 4 (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) = 0)
5010, 12fnmpti 6162 . . . . . 6 𝐹 Fn ℕ
5150a1i 11 . . . . 5 (𝜑𝐹 Fn ℕ)
5215rexrd 10290 . . . . . 6 (𝜑𝐾 ∈ ℝ*)
53 pnfxr 10293 . . . . . . 7 +∞ ∈ ℝ*
5453a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
5547nnxrd 39717 . . . . . 6 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℝ*)
5647nnred 11236 . . . . . . 7 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℝ)
5746nnred 11236 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ)
5833, 36breqtrrd 4812 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
5915adantr 466 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
603a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ∈ ℝ)
61 simpr 471 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → ¬ 1 ≤ 𝐾)
6259, 60, 61nleltd 40191 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 < 1)
6359, 60, 62ltled 10386 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ 1)
6441eqcomd 2776 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 = if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6563, 64breqtrd 4810 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6658, 65pm2.61dan 796 . . . . . . . 8 (𝜑𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6746nnrpd 12072 . . . . . . . . 9 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ+)
68 2timesgt 40012 . . . . . . . . 9 (if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ+ → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
6967, 68syl 17 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7015, 57, 56, 66, 69lelttrd 10396 . . . . . . 7 (𝜑𝐾 < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7115, 56, 70ltled 10386 . . . . . 6 (𝜑𝐾 ≤ (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7256ltpnfd 12159 . . . . . 6 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) < +∞)
7352, 54, 55, 71, 72elicod 12428 . . . . 5 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ (𝐾[,)+∞))
7451, 47, 73fnfvima2 39990 . . . 4 (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) ∈ (𝐹 “ (𝐾[,)+∞)))
7549, 74eqeltrrd 2850 . . 3 (𝜑 → 0 ∈ (𝐹 “ (𝐾[,)+∞)))
7618adantr 466 . . . . . . 7 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
77 simpr 471 . . . . . . 7 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
78 2tp1odd 15283 . . . . . . 7 ((if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ ∧ 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛)
7976, 77, 78syl2anc 565 . . . . . 6 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛)
8079iffalsed 4234 . . . . 5 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(2 ∥ 𝑛, 0, 1) = 1)
8147peano2nnd 11238 . . . . 5 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℕ)
823rexri 10298 . . . . . 6 1 ∈ ℝ*
8382a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ*)
8412, 80, 81, 83fvmptd2 39957 . . . 4 (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) = 1)
8581nnxrd 39717 . . . . . 6 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℝ*)
8681nnred 11236 . . . . . . 7 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℝ)
8756ltp1d 11155 . . . . . . . 8 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
8815, 56, 86, 70, 87lttrd 10399 . . . . . . 7 (𝜑𝐾 < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
8915, 86, 88ltled 10386 . . . . . 6 (𝜑𝐾 ≤ ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
9086ltpnfd 12159 . . . . . 6 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) < +∞)
9152, 54, 85, 89, 90elicod 12428 . . . . 5 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ (𝐾[,)+∞))
9251, 81, 91fnfvima2 39990 . . . 4 (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) ∈ (𝐹 “ (𝐾[,)+∞)))
9384, 92eqeltrrd 2850 . . 3 (𝜑 → 1 ∈ (𝐹 “ (𝐾[,)+∞)))
9475, 93prssd 4486 . 2 (𝜑 → {0, 1} ⊆ (𝐹 “ (𝐾[,)+∞)))
9514, 94eqssd 3767 1 (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1630  wcel 2144  wral 3060  Vcvv 3349  cin 3720  wss 3721  ifcif 4223  {cpr 4316   class class class wbr 4784  cmpt 4861  cima 5252   Fn wfn 6026  cfv 6031  (class class class)co 6792  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  +∞cpnf 10272  *cxr 10274   < clt 10275  cle 10276  cn 11221  2c2 11271  cz 11578  cuz 11887  +crp 12034  [,)cico 12381  cceil 12799  cdvds 15188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-ico 12385  df-fl 12800  df-ceil 12801  df-dvds 15189
This theorem is referenced by:  limsup10ex  40517  liminf10ex  40518
  Copyright terms: Public domain W3C validator