![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup0 | Structured version Visualization version GIF version |
Description: The superior limit of the empty set (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsup0 | ⊢ (lim sup‘∅) = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4942 | . . 3 ⊢ ∅ ∈ V | |
2 | eqid 2760 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
3 | 2 | limsupval 14424 | . . 3 ⊢ (∅ ∈ V → (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) |
5 | 0ima 5640 | . . . . . . . . . 10 ⊢ (∅ “ (𝑥[,)+∞)) = ∅ | |
6 | 5 | ineq1i 3953 | . . . . . . . . 9 ⊢ ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = (∅ ∩ ℝ*) |
7 | 0in 4112 | . . . . . . . . 9 ⊢ (∅ ∩ ℝ*) = ∅ | |
8 | 6, 7 | eqtri 2782 | . . . . . . . 8 ⊢ ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = ∅ |
9 | 8 | supeq1i 8520 | . . . . . . 7 ⊢ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(∅, ℝ*, < ) |
10 | xrsup0 12366 | . . . . . . 7 ⊢ sup(∅, ℝ*, < ) = -∞ | |
11 | 9, 10 | eqtri 2782 | . . . . . 6 ⊢ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = -∞ |
12 | 11 | mpteq2i 4893 | . . . . 5 ⊢ (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ -∞) |
13 | mnfxr 10308 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
14 | 13 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → -∞ ∈ ℝ*) |
15 | ren0 40142 | . . . . . 6 ⊢ ℝ ≠ ∅ | |
16 | 15 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ ≠ ∅) |
17 | 12, 14, 16 | rnmptc 39870 | . . . 4 ⊢ (⊤ → ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞}) |
18 | 17 | trud 1642 | . . 3 ⊢ ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞} |
19 | 18 | infeq1i 8551 | . 2 ⊢ inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf({-∞}, ℝ*, < ) |
20 | xrltso 12187 | . . 3 ⊢ < Or ℝ* | |
21 | infsn 8577 | . . 3 ⊢ (( < Or ℝ* ∧ -∞ ∈ ℝ*) → inf({-∞}, ℝ*, < ) = -∞) | |
22 | 20, 13, 21 | mp2an 710 | . 2 ⊢ inf({-∞}, ℝ*, < ) = -∞ |
23 | 4, 19, 22 | 3eqtri 2786 | 1 ⊢ (lim sup‘∅) = -∞ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ⊤wtru 1633 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 ∩ cin 3714 ∅c0 4058 {csn 4321 ↦ cmpt 4881 Or wor 5186 ran crn 5267 “ cima 5269 ‘cfv 6049 (class class class)co 6814 supcsup 8513 infcinf 8514 ℝcr 10147 +∞cpnf 10283 -∞cmnf 10284 ℝ*cxr 10285 < clt 10286 [,)cico 12390 lim supclsp 14420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-limsup 14421 |
This theorem is referenced by: climlimsupcex 40522 liminf0 40546 liminflelimsupcex 40550 |
Copyright terms: Public domain | W3C validator |