Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval2 Structured version   Visualization version   GIF version

Theorem liminfval2 40503
Description: The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfval2.1 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
liminfval2.2 (𝜑𝐹𝑉)
liminfval2.3 (𝜑𝐴 ⊆ ℝ)
liminfval2.4 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
liminfval2 (𝜑 → (lim inf‘𝐹) = sup((𝐺𝐴), ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem liminfval2
Dummy variables 𝑛 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminfval2.2 . . 3 (𝜑𝐹𝑉)
2 liminfval2.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
3 oveq1 6820 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘[,)+∞) = (𝑗[,)+∞))
43imaeq2d 5624 . . . . . . . 8 (𝑘 = 𝑗 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝑗[,)+∞)))
54ineq1d 3956 . . . . . . 7 (𝑘 = 𝑗 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*))
65infeq1d 8548 . . . . . 6 (𝑘 = 𝑗 → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
76cbvmptv 4902 . . . . 5 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
82, 7eqtri 2782 . . . 4 𝐺 = (𝑗 ∈ ℝ ↦ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
98liminfval 40494 . . 3 (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
101, 9syl 17 . 2 (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
11 liminfval2.4 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
12 liminfval2.3 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1312ssrexr 40157 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
14 supxrunb1 12342 . . . . . . . 8 (𝐴 ⊆ ℝ* → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1513, 14syl 17 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1611, 15mpbird 247 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥)
178liminfgf 40493 . . . . . . . . . . 11 𝐺:ℝ⟶ℝ*
1817ffvelrni 6521 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
1918ad2antlr 765 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ∈ ℝ*)
20 simpll 807 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝜑)
21 simprl 811 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥𝐴)
2212sselda 3744 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
2317ffvelrni 6521 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝐺𝑥) ∈ ℝ*)
2422, 23syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℝ*)
2520, 21, 24syl2anc 696 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ∈ ℝ*)
26 imassrn 5635 . . . . . . . . . . . 12 (𝐺𝐴) ⊆ ran 𝐺
27 frn 6214 . . . . . . . . . . . . 13 (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*)
2817, 27ax-mp 5 . . . . . . . . . . . 12 ran 𝐺 ⊆ ℝ*
2926, 28sstri 3753 . . . . . . . . . . 11 (𝐺𝐴) ⊆ ℝ*
30 supxrcl 12338 . . . . . . . . . . 11 ((𝐺𝐴) ⊆ ℝ* → sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
3129, 30ax-mp 5 . . . . . . . . . 10 sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*
3231a1i 11 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
33 simplr 809 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛 ∈ ℝ)
3420, 21, 22syl2anc 696 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥 ∈ ℝ)
35 simprr 813 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛𝑥)
36 liminfgord 40489 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛𝑥) → inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
3733, 34, 35, 36syl3anc 1477 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
388liminfgval 40497 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ → (𝐺𝑛) = inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
3938ad2antlr 765 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑛) = inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
408liminfgval 40497 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4122, 40syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4241adantlr 753 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4339, 42breq12d 4817 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐺𝑛) ≤ (𝐺𝑥) ↔ inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )))
4443adantrr 755 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → ((𝐺𝑛) ≤ (𝐺𝑥) ↔ inf(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )))
4537, 44mpbird 247 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ≤ (𝐺𝑥))
4629a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺𝐴) ⊆ ℝ*)
47 nfv 1992 . . . . . . . . . . . . . 14 𝑗𝜑
48 inss2 3977 . . . . . . . . . . . . . . . 16 ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*
49 infxrcl 12356 . . . . . . . . . . . . . . . 16 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
5048, 49ax-mp 5 . . . . . . . . . . . . . . 15 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
5150a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℝ) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
5247, 51, 8fnmptd 39933 . . . . . . . . . . . . 13 (𝜑𝐺 Fn ℝ)
5352adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐺 Fn ℝ)
54 simpr 479 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥𝐴)
5553, 22, 54fnfvimad 39958 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
56 supxrub 12347 . . . . . . . . . . 11 (((𝐺𝐴) ⊆ ℝ* ∧ (𝐺𝑥) ∈ (𝐺𝐴)) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5746, 55, 56syl2anc 696 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5820, 21, 57syl2anc 696 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ≤ sup((𝐺𝐴), ℝ*, < ))
5919, 25, 32, 45, 58xrletrd 12186 . . . . . . . 8 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
6059rexlimdvaa 3170 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → (∃𝑥𝐴 𝑛𝑥 → (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6160ralimdva 3100 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 → ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6216, 61mpd 15 . . . . 5 (𝜑 → ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
63 xrltso 12167 . . . . . . . . 9 < Or ℝ*
6463infex 8564 . . . . . . . 8 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
6564rgenw 3062 . . . . . . 7 𝑗 ∈ ℝ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
668fnmpt 6181 . . . . . . 7 (∀𝑗 ∈ ℝ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V → 𝐺 Fn ℝ)
6765, 66ax-mp 5 . . . . . 6 𝐺 Fn ℝ
68 breq1 4807 . . . . . . 7 (𝑥 = (𝐺𝑛) → (𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
6968ralrn 6525 . . . . . 6 (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < )))
7067, 69ax-mp 5 . . . . 5 (∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑛 ∈ ℝ (𝐺𝑛) ≤ sup((𝐺𝐴), ℝ*, < ))
7162, 70sylibr 224 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ))
72 supxrleub 12349 . . . . 5 ((ran 𝐺 ⊆ ℝ* ∧ sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < )))
7328, 31, 72mp2an 710 . . . 4 (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝑥 ≤ sup((𝐺𝐴), ℝ*, < ))
7471, 73sylibr 224 . . 3 (𝜑 → sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ))
7526a1i 11 . . . 4 (𝜑 → (𝐺𝐴) ⊆ ran 𝐺)
7628a1i 11 . . . 4 (𝜑 → ran 𝐺 ⊆ ℝ*)
77 supxrss 12355 . . . 4 (((𝐺𝐴) ⊆ ran 𝐺 ∧ ran 𝐺 ⊆ ℝ*) → sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))
7875, 76, 77syl2anc 696 . . 3 (𝜑 → sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))
79 supxrcl 12338 . . . . 5 (ran 𝐺 ⊆ ℝ* → sup(ran 𝐺, ℝ*, < ) ∈ ℝ*)
8028, 79ax-mp 5 . . . 4 sup(ran 𝐺, ℝ*, < ) ∈ ℝ*
81 xrletri3 12178 . . . 4 ((sup(ran 𝐺, ℝ*, < ) ∈ ℝ* ∧ sup((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ) ↔ (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ∧ sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < ))))
8280, 31, 81mp2an 710 . . 3 (sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ) ↔ (sup(ran 𝐺, ℝ*, < ) ≤ sup((𝐺𝐴), ℝ*, < ) ∧ sup((𝐺𝐴), ℝ*, < ) ≤ sup(ran 𝐺, ℝ*, < )))
8374, 78, 82sylanbrc 701 . 2 (𝜑 → sup(ran 𝐺, ℝ*, < ) = sup((𝐺𝐴), ℝ*, < ))
8410, 83eqtrd 2794 1 (𝜑 → (lim inf‘𝐹) = sup((𝐺𝐴), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  cin 3714  wss 3715   class class class wbr 4804  cmpt 4881  ran crn 5267  cima 5269   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  supcsup 8511  infcinf 8512  cr 10127  +∞cpnf 10263  *cxr 10265   < clt 10266  cle 10267  [,)cico 12370  lim infclsi 40486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-ico 12374  df-liminf 40487
This theorem is referenced by:  liminfresico  40506
  Copyright terms: Public domain W3C validator