Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfresuz Structured version   Visualization version   GIF version

Theorem liminfresuz 40538
Description: If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfresuz.m (𝜑𝑀 ∈ ℤ)
liminfresuz.z 𝑍 = (ℤ𝑀)
liminfresuz.f (𝜑𝐹𝑉)
liminfresuz.d (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)
Assertion
Ref Expression
liminfresuz (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))

Proof of Theorem liminfresuz
StepHypRef Expression
1 rescom 5582 . . . . 5 ((𝐹𝑍) ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ 𝑍)
21fveq2i 6357 . . . 4 (lim inf‘((𝐹𝑍) ↾ ℝ)) = (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍))
32a1i 11 . . 3 (𝜑 → (lim inf‘((𝐹𝑍) ↾ ℝ)) = (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)))
4 relres 5585 . . . . . . . . . 10 Rel (𝐹 ↾ ℝ)
54a1i 11 . . . . . . . . 9 (𝜑 → Rel (𝐹 ↾ ℝ))
6 liminfresuz.d . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)
7 relssres 5596 . . . . . . . . 9 ((Rel (𝐹 ↾ ℝ) ∧ dom (𝐹 ↾ ℝ) ⊆ ℤ) → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ))
85, 6, 7syl2anc 696 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ))
98eqcomd 2767 . . . . . . 7 (𝜑 → (𝐹 ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ ℤ))
109reseq1d 5551 . . . . . 6 (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)) = (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)))
11 resres 5568 . . . . . . 7 (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞)))
1211a1i 11 . . . . . 6 (𝜑 → (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))))
13 liminfresuz.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
14 liminfresuz.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
1513, 14uzinico 40309 . . . . . . . 8 (𝜑𝑍 = (ℤ ∩ (𝑀[,)+∞)))
1615eqcomd 2767 . . . . . . 7 (𝜑 → (ℤ ∩ (𝑀[,)+∞)) = 𝑍)
1716reseq2d 5552 . . . . . 6 (𝜑 → ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) = ((𝐹 ↾ ℝ) ↾ 𝑍))
1810, 12, 173eqtrrd 2800 . . . . 5 (𝜑 → ((𝐹 ↾ ℝ) ↾ 𝑍) = ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)))
1918fveq2d 6358 . . . 4 (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim inf‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))))
2013zred 11695 . . . . 5 (𝜑𝑀 ∈ ℝ)
21 eqid 2761 . . . . 5 (𝑀[,)+∞) = (𝑀[,)+∞)
22 liminfresuz.f . . . . . 6 (𝜑𝐹𝑉)
2322resexd 39839 . . . . 5 (𝜑 → (𝐹 ↾ ℝ) ∈ V)
2420, 21, 23liminfresico 40525 . . . 4 (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) = (lim inf‘(𝐹 ↾ ℝ)))
2519, 24eqtrd 2795 . . 3 (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim inf‘(𝐹 ↾ ℝ)))
263, 25eqtrd 2795 . 2 (𝜑 → (lim inf‘((𝐹𝑍) ↾ ℝ)) = (lim inf‘(𝐹 ↾ ℝ)))
2722resexd 39839 . . 3 (𝜑 → (𝐹𝑍) ∈ V)
2827liminfresre 40533 . 2 (𝜑 → (lim inf‘((𝐹𝑍) ↾ ℝ)) = (lim inf‘(𝐹𝑍)))
2922liminfresre 40533 . 2 (𝜑 → (lim inf‘(𝐹 ↾ ℝ)) = (lim inf‘𝐹))
3026, 28, 293eqtr3d 2803 1 (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2140  Vcvv 3341  cin 3715  wss 3716  dom cdm 5267  cres 5269  Rel wrel 5272  cfv 6050  (class class class)co 6815  cr 10148  +∞cpnf 10284  cz 11590  cuz 11900  [,)cico 12391  lim infclsi 40505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-q 12003  df-ico 12395  df-liminf 40506
This theorem is referenced by:  liminfresuz2  40541
  Copyright terms: Public domain W3C validator