![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfresuz | Structured version Visualization version GIF version |
Description: If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfresuz.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminfresuz.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminfresuz.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
liminfresuz.d | ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) |
Ref | Expression |
---|---|
liminfresuz | ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescom 5582 | . . . . 5 ⊢ ((𝐹 ↾ 𝑍) ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ 𝑍) | |
2 | 1 | fveq2i 6357 | . . . 4 ⊢ (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍))) |
4 | relres 5585 | . . . . . . . . . 10 ⊢ Rel (𝐹 ↾ ℝ) | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → Rel (𝐹 ↾ ℝ)) |
6 | liminfresuz.d | . . . . . . . . 9 ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) | |
7 | relssres 5596 | . . . . . . . . 9 ⊢ ((Rel (𝐹 ↾ ℝ) ∧ dom (𝐹 ↾ ℝ) ⊆ ℤ) → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ)) | |
8 | 5, 6, 7 | syl2anc 696 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ)) |
9 | 8 | eqcomd 2767 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ ℤ)) |
10 | 9 | reseq1d 5551 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)) = (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞))) |
11 | resres 5568 | . . . . . . 7 ⊢ (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞)))) |
13 | liminfresuz.m | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
14 | liminfresuz.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
15 | 13, 14 | uzinico 40309 | . . . . . . . 8 ⊢ (𝜑 → 𝑍 = (ℤ ∩ (𝑀[,)+∞))) |
16 | 15 | eqcomd 2767 | . . . . . . 7 ⊢ (𝜑 → (ℤ ∩ (𝑀[,)+∞)) = 𝑍) |
17 | 16 | reseq2d 5552 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) = ((𝐹 ↾ ℝ) ↾ 𝑍)) |
18 | 10, 12, 17 | 3eqtrrd 2800 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ 𝑍) = ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) |
19 | 18 | fveq2d 6358 | . . . 4 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim inf‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)))) |
20 | 13 | zred 11695 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
21 | eqid 2761 | . . . . 5 ⊢ (𝑀[,)+∞) = (𝑀[,)+∞) | |
22 | liminfresuz.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
23 | 22 | resexd 39839 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ V) |
24 | 20, 21, 23 | liminfresico 40525 | . . . 4 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) = (lim inf‘(𝐹 ↾ ℝ))) |
25 | 19, 24 | eqtrd 2795 | . . 3 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim inf‘(𝐹 ↾ ℝ))) |
26 | 3, 25 | eqtrd 2795 | . 2 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘(𝐹 ↾ ℝ))) |
27 | 22 | resexd 39839 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑍) ∈ V) |
28 | 27 | liminfresre 40533 | . 2 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘(𝐹 ↾ 𝑍))) |
29 | 22 | liminfresre 40533 | . 2 ⊢ (𝜑 → (lim inf‘(𝐹 ↾ ℝ)) = (lim inf‘𝐹)) |
30 | 26, 28, 29 | 3eqtr3d 2803 | 1 ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ∩ cin 3715 ⊆ wss 3716 dom cdm 5267 ↾ cres 5269 Rel wrel 5272 ‘cfv 6050 (class class class)co 6815 ℝcr 10148 +∞cpnf 10284 ℤcz 11590 ℤ≥cuz 11900 [,)cico 12391 lim infclsi 40505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-sup 8516 df-inf 8517 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-n0 11506 df-z 11591 df-uz 11901 df-q 12003 df-ico 12395 df-liminf 40506 |
This theorem is referenced by: liminfresuz2 40541 |
Copyright terms: Public domain | W3C validator |