Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfltlem Structured version   Visualization version   GIF version

Theorem liminfltlem 40554
 Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfltlem.m (𝜑𝑀 ∈ ℤ)
liminfltlem.z 𝑍 = (ℤ𝑀)
liminfltlem.f (𝜑𝐹:𝑍⟶ℝ)
liminfltlem.r (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminfltlem.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
liminfltlem (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑘,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑗)

Proof of Theorem liminfltlem
StepHypRef Expression
1 nfmpt1 4881 . . 3 𝑘(𝑘𝑍 ↦ -(𝐹𝑘))
2 liminfltlem.m . . 3 (𝜑𝑀 ∈ ℤ)
3 liminfltlem.z . . 3 𝑍 = (ℤ𝑀)
4 liminfltlem.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ)
54ffvelrnda 6502 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
65renegcld 10659 . . . 4 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
76fmptd2 39978 . . 3 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)):𝑍⟶ℝ)
83fvexi 6343 . . . . . . 7 𝑍 ∈ V
98mptex 6630 . . . . . 6 (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ V
109limsupcli 40507 . . . . 5 (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ*
1110a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ*)
12 nfv 1995 . . . . . 6 𝑘𝜑
13 nfcv 2913 . . . . . 6 𝑘𝐹
1412, 13, 2, 3, 4liminfvaluz4 40549 . . . . 5 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
15 liminfltlem.r . . . . 5 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
1614, 15eqeltrrd 2851 . . . 4 (𝜑 → -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ)
1711, 16xnegrecl2d 40213 . . 3 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ)
18 liminfltlem.x . . 3 (𝜑𝑋 ∈ ℝ+)
191, 2, 3, 7, 17, 18limsupgt 40528 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
20 simpll 750 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
213uztrn2 11906 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2221adantll 693 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
23 negex 10481 . . . . . . . . . . 11 -(𝐹𝑘) ∈ V
24 fvmpt4 39964 . . . . . . . . . . 11 ((𝑘𝑍 ∧ -(𝐹𝑘) ∈ V) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2523, 24mpan2 671 . . . . . . . . . 10 (𝑘𝑍 → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2625adantl 467 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2726oveq1d 6808 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) = (-(𝐹𝑘) − 𝑋))
285recnd 10270 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2918rpred 12075 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
3029adantr 466 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑋 ∈ ℝ)
3130recnd 10270 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑋 ∈ ℂ)
3228, 31negdi2d 10608 . . . . . . . 8 ((𝜑𝑘𝑍) → -((𝐹𝑘) + 𝑋) = (-(𝐹𝑘) − 𝑋))
3327, 32eqtr4d 2808 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) = -((𝐹𝑘) + 𝑋))
3417recnd 10270 . . . . . . . . . 10 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℂ)
3517rexnegd 39854 . . . . . . . . . . 11 (𝜑 → -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
3614, 35eqtr2d 2806 . . . . . . . . . 10 (𝜑 → -(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = (lim inf‘𝐹))
3734, 36negcon1ad 10589 . . . . . . . . 9 (𝜑 → -(lim inf‘𝐹) = (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
3837eqcomd 2777 . . . . . . . 8 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim inf‘𝐹))
3938adantr 466 . . . . . . 7 ((𝜑𝑘𝑍) → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim inf‘𝐹))
4033, 39breq12d 4799 . . . . . 6 ((𝜑𝑘𝑍) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ -((𝐹𝑘) + 𝑋) < -(lim inf‘𝐹)))
4115adantr 466 . . . . . . 7 ((𝜑𝑘𝑍) → (lim inf‘𝐹) ∈ ℝ)
425, 30readdcld 10271 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝐹𝑘) + 𝑋) ∈ ℝ)
4341, 42ltnegd 10807 . . . . . 6 ((𝜑𝑘𝑍) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑋) ↔ -((𝐹𝑘) + 𝑋) < -(lim inf‘𝐹)))
4440, 43bitr4d 271 . . . . 5 ((𝜑𝑘𝑍) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4520, 22, 44syl2anc 573 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4645ralbidva 3134 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4746rexbidva 3197 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4819, 47mpbid 222 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∀wral 3061  ∃wrex 3062  Vcvv 3351   class class class wbr 4786   ↦ cmpt 4863  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793  ℝcr 10137   + caddc 10141  ℝ*cxr 10275   < clt 10276   − cmin 10468  -cneg 10469  ℤcz 11579  ℤ≥cuz 11888  ℝ+crp 12035  -𝑒cxne 12148  lim supclsp 14409  lim infclsi 40501 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-ico 12386  df-fz 12534  df-fzo 12674  df-fl 12801  df-ceil 12802  df-limsup 14410  df-liminf 40502 This theorem is referenced by:  liminflt  40555
 Copyright terms: Public domain W3C validator