Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflimsupclim Structured version   Visualization version   GIF version

Theorem liminflimsupclim 40554
Description: A sequence of real numbers converges if its inferior limit is real, and it is greater or equal to the superior limit (in such a case, they are actually equal, see liminflelimsupuz 40532). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflimsupclim.1 (𝜑𝑀 ∈ ℤ)
liminflimsupclim.2 𝑍 = (ℤ𝑀)
liminflimsupclim.3 (𝜑𝐹:𝑍⟶ℝ)
liminflimsupclim.4 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminflimsupclim.5 (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
Assertion
Ref Expression
liminflimsupclim (𝜑𝐹 ∈ dom ⇝ )

Proof of Theorem liminflimsupclim
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 14431 . . 3 Rel ⇝
21a1i 11 . 2 (𝜑 → Rel ⇝ )
3 liminflimsupclim.3 . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
4 liminflimsupclim.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
54fvexi 6345 . . . . . . . . . 10 𝑍 ∈ V
65a1i 11 . . . . . . . . 9 (𝜑𝑍 ∈ V)
73, 6fexd 39817 . . . . . . . 8 (𝜑𝐹 ∈ V)
87limsupcld 40437 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
9 liminflimsupclim.4 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
109rexrd 10295 . . . . . . 7 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
11 liminflimsupclim.5 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
12 liminflimsupclim.1 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
133frexr 40117 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
1412, 4, 13liminflelimsupuz 40532 . . . . . . 7 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
158, 10, 11, 14xrletrid 12191 . . . . . 6 (𝜑 → (lim sup‘𝐹) = (lim inf‘𝐹))
1615, 9eqeltrd 2850 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1716recnd 10274 . . . 4 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
18 nfcv 2913 . . . . . . . . . 10 𝑘𝐹
1912adantr 466 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
203adantr 466 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
219adantr 466 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (lim inf‘𝐹) ∈ ℝ)
22 simpr 471 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
2318, 19, 4, 20, 21, 22liminflt 40552 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥))
2421ad2antrr 705 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim inf‘𝐹) ∈ ℝ)
253ad2antrr 705 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ)
264uztrn2 11911 . . . . . . . . . . . . . . . . 17 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2726adantll 693 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2825, 27ffvelrnd 6505 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
2928adantllr 698 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
3022ad2antrr 705 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
31 rpre 12042 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3230, 31syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
3324, 29, 32ltsubadd2d 10831 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑥)))
3433bicomd 213 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
3528recnd 10274 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
3615eqcomd 2777 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
3736, 17eqeltrd 2850 . . . . . . . . . . . . . . . . . 18 (𝜑 → (lim inf‘𝐹) ∈ ℂ)
3837ad2antrr 705 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim inf‘𝐹) ∈ ℂ)
3935, 38negsubdi2d 10614 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → -((𝐹𝑘) − (lim inf‘𝐹)) = ((lim inf‘𝐹) − (𝐹𝑘)))
4039breq1d 4797 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
4140adantllr 698 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ ((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥))
4241bicomd 213 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ -((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥))
4329, 24resubcld 10664 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (lim inf‘𝐹)) ∈ ℝ)
44 ltnegcon1 10735 . . . . . . . . . . . . . 14 ((((𝐹𝑘) − (lim inf‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4543, 32, 44syl2anc 573 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-((𝐹𝑘) − (lim inf‘𝐹)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4642, 45bitrd 268 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((lim inf‘𝐹) − (𝐹𝑘)) < 𝑥 ↔ -𝑥 < ((𝐹𝑘) − (lim inf‘𝐹))))
4736oveq2d 6812 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑘) − (lim inf‘𝐹)) = ((𝐹𝑘) − (lim sup‘𝐹)))
4847breq2d 4799 . . . . . . . . . . . . 13 (𝜑 → (-𝑥 < ((𝐹𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
4948ad3antrrr 709 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (-𝑥 < ((𝐹𝑘) − (lim inf‘𝐹)) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5034, 46, 493bitrd 294 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ -𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5150ralbidva 3134 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5251rexbidva 3197 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹))))
5323, 52mpbid 222 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)))
5416adantr 466 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (lim sup‘𝐹) ∈ ℝ)
5518, 19, 4, 20, 54, 22limsupgt 40525 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹))
5654ad2antrr 705 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim sup‘𝐹) ∈ ℝ)
57 ltsub23 10714 . . . . . . . . . . . 12 (((𝐹𝑘) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (lim sup‘𝐹) ∈ ℝ) → (((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
5829, 32, 56, 57syl3anc 1476 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
5958ralbidva 3134 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6059rexbidva 3197 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑥) < (lim sup‘𝐹) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6155, 60mpbid 222 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)
6253, 61jca 501 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
634rexanuz2 14297 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
6462, 63sylibr 224 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
65 simplll 758 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
66 simpllr 760 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
6726adantll 693 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
68 simpr 471 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥))
693ffvelrnda 6504 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
7016adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (lim sup‘𝐹) ∈ ℝ)
7169, 70resubcld 10664 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ)
7271adantlr 694 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ)
7331ad2antlr 706 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥 ∈ ℝ)
74 abslt 14262 . . . . . . . . . . . . 13 ((((𝐹𝑘) − (lim sup‘𝐹)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7572, 73, 74syl2anc 573 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7675adantr 466 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥 ↔ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)))
7768, 76mpbird 247 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥)) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
7877ex 397 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
7965, 66, 67, 78syl21anc 1475 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8079ralimdva 3111 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8180reximdva 3165 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(-𝑥 < ((𝐹𝑘) − (lim sup‘𝐹)) ∧ ((𝐹𝑘) − (lim sup‘𝐹)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
8264, 81mpd 15 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
8382ralrimiva 3115 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)
8417, 83jca 501 . . 3 (𝜑 → ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥))
85 ax-resscn 10199 . . . . . 6 ℝ ⊆ ℂ
8685a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
873, 86fssd 6198 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
8818, 12, 4, 87climuz 40491 . . 3 (𝜑 → (𝐹 ⇝ (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑥)))
8984, 88mpbird 247 . 2 (𝜑𝐹 ⇝ (lim sup‘𝐹))
90 releldm 5495 . 2 ((Rel ⇝ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → 𝐹 ∈ dom ⇝ )
912, 89, 90syl2anc 573 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  wss 3723   class class class wbr 4787  dom cdm 5250  Rel wrel 5255  wf 6026  cfv 6030  (class class class)co 6796  cc 10140  cr 10141   + caddc 10145   < clt 10280  cle 10281  cmin 10472  -cneg 10473  cz 11584  cuz 11893  +crp 12035  abscabs 14182  lim supclsp 14409  cli 14423  lim infclsi 40498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-ioo 12384  df-ico 12386  df-fz 12534  df-fzo 12674  df-fl 12801  df-ceil 12802  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-liminf 40499
This theorem is referenced by:  climliminflimsup  40555  climliminflimsup2  40556
  Copyright terms: Public domain W3C validator