Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsupuz Structured version   Visualization version   GIF version

Theorem liminflelimsupuz 40535
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsupuz.1 (𝜑𝑀 ∈ ℤ)
liminflelimsupuz.2 𝑍 = (ℤ𝑀)
liminflelimsupuz.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminflelimsupuz (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))

Proof of Theorem liminflelimsupuz
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflelimsupuz.3 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
2 liminflelimsupuz.2 . . . . 5 𝑍 = (ℤ𝑀)
32fvexi 6343 . . . 4 𝑍 ∈ V
43a1i 11 . . 3 (𝜑𝑍 ∈ V)
51, 4fexd 39817 . 2 (𝜑𝐹 ∈ V)
6 liminflelimsupuz.1 . . . 4 (𝜑𝑀 ∈ ℤ)
76, 2uzubico2 40315 . . 3 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍)
81ffnd 6186 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑍)
98adantr 466 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝐹 Fn 𝑍)
10 simpr 471 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
11 id 22 . . . . . . . . . . . . 13 (𝑗𝑍𝑗𝑍)
122, 11uzxrd 40208 . . . . . . . . . . . 12 (𝑗𝑍𝑗 ∈ ℝ*)
13 pnfxr 10294 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1413a1i 11 . . . . . . . . . . . 12 (𝑗𝑍 → +∞ ∈ ℝ*)
1512xrleidd 40126 . . . . . . . . . . . 12 (𝑗𝑍𝑗𝑗)
162, 11uzred 40186 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ ℝ)
17 ltpnf 12159 . . . . . . . . . . . . 13 (𝑗 ∈ ℝ → 𝑗 < +∞)
1816, 17syl 17 . . . . . . . . . . . 12 (𝑗𝑍𝑗 < +∞)
1912, 14, 12, 15, 18elicod 12429 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (𝑗[,)+∞))
2019adantl 467 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗 ∈ (𝑗[,)+∞))
219, 10, 20fnfvima2 39996 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ (𝐹 “ (𝑗[,)+∞)))
221ffvelrnda 6502 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
2321, 22elind 3949 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*))
24 ne0i 4069 . . . . . . . 8 ((𝐹𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
2523, 24syl 17 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
2625ex 397 . . . . . 6 (𝜑 → (𝑗𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2726ad2antrr 705 . . . . 5 (((𝜑𝑘 ∈ ℝ) ∧ 𝑗 ∈ (𝑘[,)+∞)) → (𝑗𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2827reximdva 3165 . . . 4 ((𝜑𝑘 ∈ ℝ) → (∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍 → ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2928ralimdva 3111 . . 3 (𝜑 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
307, 29mpd 15 . 2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
315, 30liminflelimsup 40526 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  Vcvv 3351  cin 3722  c0 4063   class class class wbr 4786  cima 5252   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  cr 10137  +∞cpnf 10273  *cxr 10275   < clt 10276  cle 10277  cz 11579  cuz 11888  [,)cico 12382  lim supclsp 14409  lim infclsi 40501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-ioo 12384  df-ico 12386  df-fl 12801  df-ceil 12802  df-limsup 14410  df-liminf 40502
This theorem is referenced by:  liminfgelimsupuz  40538  liminflimsupclim  40557
  Copyright terms: Public domain W3C validator