Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfgval Structured version   Visualization version   GIF version

Theorem liminfgval 40512
Description: Value of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
liminfgval.1 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
liminfgval (𝑀 ∈ ℝ → (𝐺𝑀) = inf(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem liminfgval
StepHypRef Expression
1 oveq1 6800 . . . . 5 (𝑘 = 𝑀 → (𝑘[,)+∞) = (𝑀[,)+∞))
21imaeq2d 5607 . . . 4 (𝑘 = 𝑀 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝑀[,)+∞)))
32ineq1d 3964 . . 3 (𝑘 = 𝑀 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*))
43infeq1d 8539 . 2 (𝑘 = 𝑀 → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ))
5 liminfgval.1 . 2 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
6 xrltso 12179 . . 3 < Or ℝ*
76infex 8555 . 2 inf(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
84, 5, 7fvmpt 6424 1 (𝑀 ∈ ℝ → (𝐺𝑀) = inf(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cin 3722  cmpt 4863  cima 5252  cfv 6031  (class class class)co 6793  infcinf 8503  cr 10137  +∞cpnf 10273  *cxr 10275   < clt 10276  [,)cico 12382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-pre-lttri 10212  ax-pre-lttrn 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281
This theorem is referenced by:  liminfval2  40518
  Copyright terms: Public domain W3C validator