![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limelon | Structured version Visualization version GIF version |
Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
Ref | Expression |
---|---|
limelon | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 5937 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
2 | elong 5884 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ On ↔ Ord 𝐴)) | |
3 | 1, 2 | syl5ibr 236 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Lim 𝐴 → 𝐴 ∈ On)) |
4 | 3 | imp 444 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2131 Ord word 5875 Oncon0 5876 Lim wlim 5877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-v 3334 df-in 3714 df-ss 3721 df-uni 4581 df-tr 4897 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-ord 5879 df-on 5880 df-lim 5881 |
This theorem is referenced by: onzsl 7203 limuni3 7209 tfindsg2 7218 dfom2 7224 rdglim 7683 oalim 7773 omlim 7774 oelim 7775 oalimcl 7801 oaass 7802 omlimcl 7819 odi 7820 omass 7821 oen0 7827 oewordri 7833 oelim2 7836 oelimcl 7841 omabs 7888 r1lim 8800 alephordi 9079 cflm 9256 alephsing 9282 pwcfsdom 9589 winafp 9703 r1limwun 9742 |
Copyright terms: Public domain | W3C validator |