Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcresiooub Structured version   Visualization version   GIF version

Theorem limcresiooub 40192
Description: The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcresiooub.f (𝜑𝐹:𝐴⟶ℂ)
limcresiooub.b (𝜑𝐵 ∈ ℝ*)
limcresiooub.c (𝜑𝐶 ∈ ℝ)
limcresiooub.bltc (𝜑𝐵 < 𝐶)
limcresiooub.bcss (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
limcresiooub.d (𝜑𝐷 ∈ ℝ*)
limcresiooub.cled (𝜑𝐷𝐵)
Assertion
Ref Expression
limcresiooub (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))

Proof of Theorem limcresiooub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcresiooub.d . . . . . 6 (𝜑𝐷 ∈ ℝ*)
2 limcresiooub.cled . . . . . 6 (𝜑𝐷𝐵)
3 iooss1 12248 . . . . . 6 ((𝐷 ∈ ℝ*𝐷𝐵) → (𝐵(,)𝐶) ⊆ (𝐷(,)𝐶))
41, 2, 3syl2anc 694 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐷(,)𝐶))
54resabs1d 5463 . . . 4 (𝜑 → ((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) = (𝐹 ↾ (𝐵(,)𝐶)))
65eqcomd 2657 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐶)) = ((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)))
76oveq1d 6705 . 2 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = (((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) lim 𝐶))
8 limcresiooub.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
9 fresin 6111 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐷(,)𝐶)):(𝐴 ∩ (𝐷(,)𝐶))⟶ℂ)
108, 9syl 17 . . 3 (𝜑 → (𝐹 ↾ (𝐷(,)𝐶)):(𝐴 ∩ (𝐷(,)𝐶))⟶ℂ)
11 limcresiooub.bcss . . . 4 (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
1211, 4ssind 3870 . . 3 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴 ∩ (𝐷(,)𝐶)))
13 inss2 3867 . . . . 5 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ (𝐷(,)𝐶)
14 ioosscn 40034 . . . . 5 (𝐷(,)𝐶) ⊆ ℂ
1513, 14sstri 3645 . . . 4 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℂ
1615a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℂ)
17 eqid 2651 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2651 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
19 limcresiooub.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
20 limcresiooub.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
2120rexrd 10127 . . . . 5 (𝜑𝐶 ∈ ℝ*)
22 limcresiooub.bltc . . . . 5 (𝜑𝐵 < 𝐶)
23 ubioc1 12265 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → 𝐶 ∈ (𝐵(,]𝐶))
2419, 21, 22, 23syl3anc 1366 . . . 4 (𝜑𝐶 ∈ (𝐵(,]𝐶))
25 snunioo2 40049 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → ((𝐵(,)𝐶) ∪ {𝐶}) = (𝐵(,]𝐶))
2619, 21, 22, 25syl3anc 1366 . . . . . 6 (𝜑 → ((𝐵(,)𝐶) ∪ {𝐶}) = (𝐵(,]𝐶))
2726fveq2d 6233 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)))
2817cnfldtop 22634 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
29 ovex 6718 . . . . . . . . . 10 (𝐷(,)𝐶) ∈ V
3029inex2 4833 . . . . . . . . 9 (𝐴 ∩ (𝐷(,)𝐶)) ∈ V
31 snex 4938 . . . . . . . . 9 {𝐶} ∈ V
3230, 31unex 6998 . . . . . . . 8 ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V
33 resttop 21012 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top)
3428, 32, 33mp2an 708 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top
3534a1i 11 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top)
36 pnfxr 10130 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
3736a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
38 xrleid 12021 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ*𝐵𝐵)
3919, 38syl 17 . . . . . . . . . . . . 13 (𝜑𝐵𝐵)
4020ltpnfd 11993 . . . . . . . . . . . . 13 (𝜑𝐶 < +∞)
41 iocssioo 12301 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐵𝐵𝐶 < +∞)) → (𝐵(,]𝐶) ⊆ (𝐵(,)+∞))
4219, 37, 39, 40, 41syl22anc 1367 . . . . . . . . . . . 12 (𝜑 → (𝐵(,]𝐶) ⊆ (𝐵(,)+∞))
43 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)
44 snidg 4239 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ ℝ → 𝐶 ∈ {𝐶})
45 elun2 3814 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ {𝐶} → 𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4620, 44, 453syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4746adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4843, 47eqeltrd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4948adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ 𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
50 simpll 805 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝜑)
5119adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈ ℝ*)
5251adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐵 ∈ ℝ*)
5321adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈ ℝ*)
5453adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ*)
55 iocssre 12291 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵(,]𝐶) ⊆ ℝ)
5619, 20, 55syl2anc 694 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵(,]𝐶) ⊆ ℝ)
5756sselda 3636 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ)
5857adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ℝ)
59 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶))
60 iocgtlb 40042 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
6151, 53, 59, 60syl3anc 1366 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
6261adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐵 < 𝑥)
6320ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ)
64 iocleub 40043 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
6551, 53, 59, 64syl3anc 1366 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
6665adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥𝐶)
67 neqne 2831 . . . . . . . . . . . . . . . . . . . 20 𝑥 = 𝐶𝑥𝐶)
6867adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥𝐶)
6968necomd 2878 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶𝑥)
7058, 63, 66, 69leneltd 10229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 < 𝐶)
7152, 54, 58, 62, 70eliood 40038 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)𝐶))
7212sselda 3636 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
73 elun1 3813 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7472, 73syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7550, 71, 74syl2anc 694 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7649, 75pm2.61dan 849 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7776ralrimiva 2995 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
78 dfss3 3625 . . . . . . . . . . . . 13 ((𝐵(,]𝐶) ⊆ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ↔ ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7977, 78sylibr 224 . . . . . . . . . . . 12 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
8042, 79ssind 3870 . . . . . . . . . . 11 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
8180sseld 3635 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))))
8224adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ (𝐵(,]𝐶))
8343, 82eqeltrd 2730 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
8483adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
85 ioossioc 40031 . . . . . . . . . . . . 13 (𝐵(,)𝐶) ⊆ (𝐵(,]𝐶)
8619ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐵 ∈ ℝ*)
8721ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ*)
88 elinel1 3832 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ (𝐵(,)+∞))
8988elioored 40094 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ ℝ)
9089ad2antlr 763 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ℝ)
9136a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → +∞ ∈ ℝ*)
9288ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)+∞))
93 ioogtlb 40035 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐵(,)+∞)) → 𝐵 < 𝑥)
9486, 91, 92, 93syl3anc 1366 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐵 < 𝑥)
951ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐷 ∈ ℝ*)
96 elinel2 3833 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
97 id 22 . . . . . . . . . . . . . . . . . . 19 𝑥 = 𝐶 → ¬ 𝑥 = 𝐶)
98 velsn 4226 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝐶} ↔ 𝑥 = 𝐶)
9997, 98sylnibr 318 . . . . . . . . . . . . . . . . . 18 𝑥 = 𝐶 → ¬ 𝑥 ∈ {𝐶})
100 elunnel2 39512 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∧ ¬ 𝑥 ∈ {𝐶}) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
10196, 99, 100syl2an 493 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
10213, 101sseldi 3634 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐷(,)𝐶))
103102adantll 750 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐷(,)𝐶))
104 iooltub 40053 . . . . . . . . . . . . . . 15 ((𝐷 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐷(,)𝐶)) → 𝑥 < 𝐶)
10595, 87, 103, 104syl3anc 1366 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 < 𝐶)
10686, 87, 90, 94, 105eliood 40038 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)𝐶))
10785, 106sseldi 3634 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
10884, 107pm2.61dan 849 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) → 𝑥 ∈ (𝐵(,]𝐶))
109108ex 449 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ (𝐵(,]𝐶)))
11081, 109impbid 202 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵(,]𝐶) ↔ 𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))))
111110eqrdv 2649 . . . . . . . 8 (𝜑 → (𝐵(,]𝐶) = ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
112 retop 22612 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
113112a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ Top)
11432a1i 11 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V)
115 iooretop 22616 . . . . . . . . . 10 (𝐵(,)+∞) ∈ (topGen‘ran (,))
116115a1i 11 . . . . . . . . 9 (𝜑 → (𝐵(,)+∞) ∈ (topGen‘ran (,)))
117 elrestr 16136 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V ∧ (𝐵(,)+∞) ∈ (topGen‘ran (,))) → ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
118113, 114, 116, 117syl3anc 1366 . . . . . . . 8 (𝜑 → ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
119111, 118eqeltrd 2730 . . . . . . 7 (𝜑 → (𝐵(,]𝐶) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
12017tgioo2 22653 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
121120oveq1i 6700 . . . . . . . 8 ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
12228a1i 11 . . . . . . . . 9 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
123 ioossre 12273 . . . . . . . . . . . 12 (𝐷(,)𝐶) ⊆ ℝ
12413, 123sstri 3645 . . . . . . . . . . 11 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℝ
125124a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℝ)
12620snssd 4372 . . . . . . . . . 10 (𝜑 → {𝐶} ⊆ ℝ)
127125, 126unssd 3822 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ⊆ ℝ)
128 reex 10065 . . . . . . . . . 10 ℝ ∈ V
129128a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ V)
130 restabs 21017 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
131122, 127, 129, 130syl3anc 1366 . . . . . . . 8 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
132121, 131syl5eq 2697 . . . . . . 7 (𝜑 → ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
133119, 132eleqtrd 2732 . . . . . 6 (𝜑 → (𝐵(,]𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
134 isopn3i 20934 . . . . . 6 ((((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top ∧ (𝐵(,]𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)) = (𝐵(,]𝐶))
13535, 133, 134syl2anc 694 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)) = (𝐵(,]𝐶))
13627, 135eqtr2d 2686 . . . 4 (𝜑 → (𝐵(,]𝐶) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})))
13724, 136eleqtrd 2732 . . 3 (𝜑𝐶 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})))
13810, 12, 16, 17, 18, 137limcres 23695 . 2 (𝜑 → (((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))
1397, 138eqtrd 2685 1 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  Vcvv 3231  cun 3605  cin 3606  wss 3607  {csn 4210   class class class wbr 4685  ran crn 5144  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  (,)cioo 12213  (,]cioc 12214  t crest 16128  TopOpenctopn 16129  topGenctg 16145  fldccnfld 19794  Topctop 20746  intcnt 20869   lim climc 23671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-ntr 20872  df-cnp 21080  df-xms 22172  df-ms 22173  df-limc 23675
This theorem is referenced by:  fouriersw  40766
  Copyright terms: Public domain W3C validator