MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcresi Structured version   Visualization version   GIF version

Theorem limcresi 23694
Description: Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)

Proof of Theorem limcresi
Dummy variables 𝑣 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 23683 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp1d 1093 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐹:dom 𝐹⟶ℂ)
31simp2d 1094 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → dom 𝐹 ⊆ ℂ)
41simp3d 1095 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
5 eqid 2651 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
62, 3, 4, 5ellimc2 23686 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)))))
76ibi 256 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢))))
8 inss2 3867 . . . . . . . . . . . . 13 (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ ((dom 𝐹𝐶) ∖ {𝐵})
9 difss 3770 . . . . . . . . . . . . . 14 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹𝐶)
10 inss2 3867 . . . . . . . . . . . . . 14 (dom 𝐹𝐶) ⊆ 𝐶
119, 10sstri 3645 . . . . . . . . . . . . 13 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ 𝐶
128, 11sstri 3645 . . . . . . . . . . . 12 (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ 𝐶
13 resima2 5467 . . . . . . . . . . . 12 ((𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ 𝐶 → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) = (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))))
1412, 13ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) = (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})))
15 inss1 3866 . . . . . . . . . . . . 13 (dom 𝐹𝐶) ⊆ dom 𝐹
16 ssdif 3778 . . . . . . . . . . . . 13 ((dom 𝐹𝐶) ⊆ dom 𝐹 → ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵}))
1715, 16ax-mp 5 . . . . . . . . . . . 12 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵})
18 sslin 3872 . . . . . . . . . . . 12 (((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵}) → (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
19 imass2 5536 . . . . . . . . . . . 12 ((𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})) → (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))))
2017, 18, 19mp2b 10 . . . . . . . . . . 11 (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
2114, 20eqsstri 3668 . . . . . . . . . 10 ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
22 sstr 3644 . . . . . . . . . 10 ((((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)
2321, 22mpan 706 . . . . . . . . 9 ((𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢 → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)
2423anim2i 592 . . . . . . . 8 ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → (𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))
2524reximi 3040 . . . . . . 7 (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))
2625imim2i 16 . . . . . 6 ((𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)) → (𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))
2726ralimi 2981 . . . . 5 (∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))
2827anim2i 592 . . . 4 ((𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢))) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))))
297, 28syl 17 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))))
30 fresin 6111 . . . . 5 (𝐹:dom 𝐹⟶ℂ → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
312, 30syl 17 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
3215, 3syl5ss 3647 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (dom 𝐹𝐶) ⊆ ℂ)
3331, 32, 4, 5ellimc2 23686 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))))
3429, 33mpbird 247 . 2 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ((𝐹𝐶) lim 𝐵))
3534ssriv 3640 1 (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  cdif 3604  cin 3606  wss 3607  {csn 4210  dom cdm 5143  cres 5145  cima 5146  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  TopOpenctopn 16129  fldccnfld 19794   lim climc 23671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cnp 21080  df-xms 22172  df-ms 22173  df-limc 23675
This theorem is referenced by:  limciun  23703  dvres2lem  23719  dvidlem  23724  dvcnp2  23728  dvcobr  23754  dvcnvlem  23784  lhop1lem  23821  lhop2  23823  lhop  23824  taylthlem2  24173  fourierdlem32  40674  fourierdlem33  40675  fourierdlem46  40687  fourierdlem74  40715  fourierdlem75  40716  fourierdlem84  40725  fourierdlem85  40726  fourierdlem88  40729  fouriercnp  40761  fouriercn  40767
  Copyright terms: Public domain W3C validator