MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcnlp Structured version   Visualization version   GIF version

Theorem limcnlp 23862
Description: If 𝐵 is not a limit point of the domain of the function 𝐹, then every point is a limit of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
limccl.a (𝜑𝐴 ⊆ ℂ)
limccl.b (𝜑𝐵 ∈ ℂ)
ellimc2.k 𝐾 = (TopOpen‘ℂfld)
limcnlp.n (𝜑 → ¬ 𝐵 ∈ ((limPt‘𝐾)‘𝐴))
Assertion
Ref Expression
limcnlp (𝜑 → (𝐹 lim 𝐵) = ℂ)

Proof of Theorem limcnlp
Dummy variables 𝑥 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
2 limccl.a . . . 4 (𝜑𝐴 ⊆ ℂ)
3 limccl.b . . . 4 (𝜑𝐵 ∈ ℂ)
4 ellimc2.k . . . 4 𝐾 = (TopOpen‘ℂfld)
51, 2, 3, 4ellimc2 23861 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
64cnfldtop 22807 . . . . . . . . . 10 𝐾 ∈ Top
72adantr 466 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → 𝐴 ⊆ ℂ)
87ssdifssd 3899 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
94cnfldtopon 22806 . . . . . . . . . . . 12 𝐾 ∈ (TopOn‘ℂ)
109toponunii 20941 . . . . . . . . . . 11 ℂ = 𝐾
1110clscld 21072 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ) → ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾))
126, 8, 11sylancr 575 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾))
1310cldopn 21056 . . . . . . . . 9 (((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾) → (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾)
1412, 13syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾)
15 limcnlp.n . . . . . . . . . . 11 (𝜑 → ¬ 𝐵 ∈ ((limPt‘𝐾)‘𝐴))
1610islp 21165 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
176, 2, 16sylancr 575 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
1815, 17mtbid 313 . . . . . . . . . 10 (𝜑 → ¬ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))
193, 18eldifd 3734 . . . . . . . . 9 (𝜑𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
2019adantr 466 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
21 difin2 4038 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝐵}) ⊆ ℂ → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))
228, 21syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))
2310sscls 21081 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))
246, 8, 23sylancr 575 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))
25 ssdif0 4089 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ↔ ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ∅)
2624, 25sylib 208 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ∅)
2722, 26eqtr3d 2807 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})) = ∅)
2827imaeq2d 5607 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ∅))
29 ima0 5622 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
3028, 29syl6eq 2821 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) = ∅)
31 0ss 4116 . . . . . . . . 9 ∅ ⊆ 𝑢
3230, 31syl6eqss 3804 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)
33 eleq2 2839 . . . . . . . . . 10 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝐵𝑣𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))))
34 ineq1 3958 . . . . . . . . . . . 12 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝑣 ∩ (𝐴 ∖ {𝐵})) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))
3534imaeq2d 5607 . . . . . . . . . . 11 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))))
3635sseq1d 3781 . . . . . . . . . 10 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3733, 36anbi12d 616 . . . . . . . . 9 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∧ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
3837rspcev 3460 . . . . . . . 8 (((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾 ∧ (𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∧ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3914, 20, 32, 38syl12anc 1474 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
4039a1d 25 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
4140ralrimivw 3116 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
4241ex 397 . . . 4 (𝜑 → (𝑥 ∈ ℂ → ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
4342pm4.71d 551 . . 3 (𝜑 → (𝑥 ∈ ℂ ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
445, 43bitr4d 271 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ℂ))
4544eqrdv 2769 1 (𝜑 → (𝐹 lim 𝐵) = ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  cdif 3720  cin 3722  wss 3723  c0 4063  {csn 4316  cima 5252  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  TopOpenctopn 16290  fldccnfld 19961  Topctop 20918  Clsdccld 21041  clsccl 21043  limPtclp 21159   lim climc 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-rest 16291  df-topn 16292  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-cls 21046  df-lp 21161  df-cnp 21253  df-xms 22345  df-ms 22346  df-limc 23850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator