![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limcmpt2 | Structured version Visualization version GIF version |
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcmpt2.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
limcmpt2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
limcmpt2.f | ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) |
limcmpt2.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
limcmpt2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
limcmpt2 | ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmpt2.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
2 | 1 | ssdifssd 3896 | . . 3 ⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
3 | limcmpt2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | 1, 3 | sseldd 3750 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | eldifsn 4450 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) | |
6 | limcmpt2.f | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) | |
7 | 5, 6 | sylan2b 494 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐷 ∈ ℂ) |
8 | eqid 2769 | . . 3 ⊢ (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | |
9 | limcmpt2.k | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
10 | 2, 4, 7, 8, 9 | limcmpt 23873 | . 2 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
11 | undif1 4182 | . . . . 5 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵}) | |
12 | 3 | snssd 4472 | . . . . . 6 ⊢ (𝜑 → {𝐵} ⊆ 𝐴) |
13 | ssequn2 3934 | . . . . . 6 ⊢ ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴) | |
14 | 12, 13 | sylib 208 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = 𝐴) |
15 | 11, 14 | syl5eq 2815 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
16 | 15 | mpteq1d 4869 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷))) |
17 | 15 | oveq2d 6807 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾 ↾t 𝐴)) |
18 | limcmpt2.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
19 | 17, 18 | syl6eqr 2821 | . . . . 5 ⊢ (𝜑 → (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = 𝐽) |
20 | 19 | oveq1d 6806 | . . . 4 ⊢ (𝜑 → ((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾) = (𝐽 CnP 𝐾)) |
21 | 20 | fveq1d 6333 | . . 3 ⊢ (𝜑 → (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) = ((𝐽 CnP 𝐾)‘𝐵)) |
22 | 16, 21 | eleq12d 2842 | . 2 ⊢ (𝜑 → ((𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
23 | 10, 22 | bitrd 268 | 1 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1629 ∈ wcel 2143 ≠ wne 2941 ∖ cdif 3717 ∪ cun 3718 ⊆ wss 3720 ifcif 4222 {csn 4313 ↦ cmpt 4860 ‘cfv 6030 (class class class)co 6791 ℂcc 10134 ↾t crest 16295 TopOpenctopn 16296 ℂfldccnfld 19967 CnP ccnp 21256 limℂ climc 23852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 ax-pre-sup 10214 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-int 4609 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-oadd 7715 df-er 7894 df-map 8009 df-pm 8010 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-fi 8471 df-sup 8502 df-inf 8503 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-5 11282 df-6 11283 df-7 11284 df-8 11285 df-9 11286 df-n0 11493 df-z 11578 df-dec 11694 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-fz 12533 df-seq 13009 df-exp 13068 df-cj 14050 df-re 14051 df-im 14052 df-sqrt 14186 df-abs 14187 df-struct 16072 df-ndx 16073 df-slot 16074 df-base 16076 df-plusg 16168 df-mulr 16169 df-starv 16170 df-tset 16174 df-ple 16175 df-ds 16178 df-unif 16179 df-rest 16297 df-topn 16298 df-topgen 16318 df-psmet 19959 df-xmet 19960 df-met 19961 df-bl 19962 df-mopn 19963 df-cnfld 19968 df-top 20925 df-topon 20942 df-topsp 20964 df-bases 20977 df-cnp 21259 df-xms 22351 df-ms 22352 df-limc 23856 |
This theorem is referenced by: dvcnp 23908 |
Copyright terms: Public domain | W3C validator |