![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limclr | Structured version Visualization version GIF version |
Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
limclr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
limclr.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limclr.j | ⊢ 𝐽 = (topGen‘ran (,)) |
limclr.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
limclr.lp1 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) |
limclr.lp2 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) |
limclr.l | ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
limclr.r | ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
Ref | Expression |
---|---|
limclr | ⊢ (𝜑 → (((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqne 2932 | . . . . . 6 ⊢ (¬ 𝐿 = 𝑅 → 𝐿 ≠ 𝑅) | |
2 | limclr.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
3 | limclr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
4 | 3 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐴 ⊆ ℝ) |
5 | limclr.j | . . . . . . . 8 ⊢ 𝐽 = (topGen‘ran (,)) | |
6 | limclr.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
7 | 6 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐹:𝐴⟶ℂ) |
8 | limclr.lp1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) | |
9 | 8 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) |
10 | limclr.lp2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) | |
11 | 10 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) |
12 | limclr.l | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) | |
13 | 12 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
14 | limclr.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) | |
15 | 14 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
16 | simpr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → 𝐿 ≠ 𝑅) | |
17 | 2, 4, 5, 7, 9, 11, 13, 15, 16 | limclner 40378 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → (𝐹 limℂ 𝐵) = ∅) |
18 | nne 2928 | . . . . . . 7 ⊢ (¬ (𝐹 limℂ 𝐵) ≠ ∅ ↔ (𝐹 limℂ 𝐵) = ∅) | |
19 | 17, 18 | sylibr 224 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 ≠ 𝑅) → ¬ (𝐹 limℂ 𝐵) ≠ ∅) |
20 | 1, 19 | sylan2 492 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐿 = 𝑅) → ¬ (𝐹 limℂ 𝐵) ≠ ∅) |
21 | 20 | ex 449 | . . . 4 ⊢ (𝜑 → (¬ 𝐿 = 𝑅 → ¬ (𝐹 limℂ 𝐵) ≠ ∅)) |
22 | 21 | con4d 114 | . . 3 ⊢ (𝜑 → ((𝐹 limℂ 𝐵) ≠ ∅ → 𝐿 = 𝑅)) |
23 | 3 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐴 ⊆ ℝ) |
24 | 6 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐹:𝐴⟶ℂ) |
25 | retop 22758 | . . . . . . . . . 10 ⊢ (topGen‘ran (,)) ∈ Top | |
26 | 5, 25 | eqeltri 2827 | . . . . . . . . 9 ⊢ 𝐽 ∈ Top |
27 | inss2 3969 | . . . . . . . . . 10 ⊢ (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵) | |
28 | ioossre 12420 | . . . . . . . . . 10 ⊢ (-∞(,)𝐵) ⊆ ℝ | |
29 | 27, 28 | sstri 3745 | . . . . . . . . 9 ⊢ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ |
30 | uniretop 22759 | . . . . . . . . . . 11 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
31 | 5 | eqcomi 2761 | . . . . . . . . . . . 12 ⊢ (topGen‘ran (,)) = 𝐽 |
32 | 31 | unieqi 4589 | . . . . . . . . . . 11 ⊢ ∪ (topGen‘ran (,)) = ∪ 𝐽 |
33 | 30, 32 | eqtri 2774 | . . . . . . . . . 10 ⊢ ℝ = ∪ 𝐽 |
34 | 33 | lpss 21140 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ) → ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ) |
35 | 26, 29, 34 | mp2an 710 | . . . . . . . 8 ⊢ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵))) ⊆ ℝ |
36 | 35, 8 | sseldi 3734 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
37 | 36 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐵 ∈ ℝ) |
38 | 12 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
39 | 14 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
40 | simpr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐿 = 𝑅) | |
41 | 2, 23, 5, 24, 37, 38, 39, 40 | limcleqr 40371 | . . . . 5 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
42 | ne0i 4056 | . . . . 5 ⊢ (𝐿 ∈ (𝐹 limℂ 𝐵) → (𝐹 limℂ 𝐵) ≠ ∅) | |
43 | 41, 42 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝐿 = 𝑅) → (𝐹 limℂ 𝐵) ≠ ∅) |
44 | 43 | ex 449 | . . 3 ⊢ (𝜑 → (𝐿 = 𝑅 → (𝐹 limℂ 𝐵) ≠ ∅)) |
45 | 22, 44 | impbid 202 | . 2 ⊢ (𝜑 → ((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅)) |
46 | 41 | ex 449 | . 2 ⊢ (𝜑 → (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵))) |
47 | 45, 46 | jca 555 | 1 ⊢ (𝜑 → (((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 ∩ cin 3706 ⊆ wss 3707 ∅c0 4050 ∪ cuni 4580 ran crn 5259 ↾ cres 5260 ⟶wf 6037 ‘cfv 6041 (class class class)co 6805 ℂcc 10118 ℝcr 10119 +∞cpnf 10255 -∞cmnf 10256 (,)cioo 12360 TopOpenctopn 16276 topGenctg 16292 ℂfldccnfld 19940 Topctop 20892 limPtclp 21132 limℂ climc 23817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-pm 8018 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fi 8474 df-sup 8505 df-inf 8506 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-z 11562 df-dec 11678 df-uz 11872 df-q 11974 df-rp 12018 df-xneg 12131 df-xadd 12132 df-xmul 12133 df-ioo 12364 df-fz 12512 df-seq 12988 df-exp 13047 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-plusg 16148 df-mulr 16149 df-starv 16150 df-tset 16154 df-ple 16155 df-ds 16158 df-unif 16159 df-rest 16277 df-topn 16278 df-topgen 16298 df-psmet 19932 df-xmet 19933 df-met 19934 df-bl 19935 df-mopn 19936 df-cnfld 19941 df-top 20893 df-topon 20910 df-topsp 20931 df-bases 20944 df-cld 21017 df-ntr 21018 df-cls 21019 df-nei 21096 df-lp 21134 df-cnp 21226 df-xms 22318 df-ms 22319 df-limc 23821 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |