Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limccog Structured version   Visualization version   GIF version

Theorem limccog 40272
Description: Limit of the composition of two functions. If the limit of 𝐹 at 𝐴 is 𝐵 and the limit of 𝐺 at 𝐵 is 𝐶, then the limit of 𝐺𝐹 at 𝐴 is 𝐶. With respect to limcco 23777 and limccnp 23775, here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limccog.1 (𝜑 → ran 𝐹 ⊆ (dom 𝐺 ∖ {𝐵}))
limccog.2 (𝜑𝐵 ∈ (𝐹 lim 𝐴))
limccog.3 (𝜑𝐶 ∈ (𝐺 lim 𝐵))
Assertion
Ref Expression
limccog (𝜑𝐶 ∈ ((𝐺𝐹) lim 𝐴))

Proof of Theorem limccog
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23759 . . 3 (𝐺 lim 𝐵) ⊆ ℂ
2 limccog.3 . . 3 (𝜑𝐶 ∈ (𝐺 lim 𝐵))
31, 2sseldi 3707 . 2 (𝜑𝐶 ∈ ℂ)
4 limcrcl 23758 . . . . . . . . . . . 12 (𝐶 ∈ (𝐺 lim 𝐵) → (𝐺:dom 𝐺⟶ℂ ∧ dom 𝐺 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
52, 4syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺:dom 𝐺⟶ℂ ∧ dom 𝐺 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
65simp1d 1134 . . . . . . . . . 10 (𝜑𝐺:dom 𝐺⟶ℂ)
75simp2d 1135 . . . . . . . . . 10 (𝜑 → dom 𝐺 ⊆ ℂ)
85simp3d 1136 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
9 eqid 2724 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
106, 7, 8, 9ellimc2 23761 . . . . . . . . 9 (𝜑 → (𝐶 ∈ (𝐺 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)))))
112, 10mpbid 222 . . . . . . . 8 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢))))
1211simprd 482 . . . . . . 7 (𝜑 → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)))
1312r19.21bi 3034 . . . . . 6 ((𝜑𝑢 ∈ (TopOpen‘ℂfld)) → (𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)))
1413imp 444 . . . . 5 (((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢))
15 simp1ll 1273 . . . . . . . 8 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → 𝜑)
16 simp2 1129 . . . . . . . 8 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → 𝑣 ∈ (TopOpen‘ℂfld))
17 simp3l 1220 . . . . . . . 8 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → 𝐵𝑣)
18 limccog.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (𝐹 lim 𝐴))
19 limcrcl 23758 . . . . . . . . . . . . . . 15 (𝐵 ∈ (𝐹 lim 𝐴) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐴 ∈ ℂ))
2018, 19syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐴 ∈ ℂ))
2120simp1d 1134 . . . . . . . . . . . . 13 (𝜑𝐹:dom 𝐹⟶ℂ)
2220simp2d 1135 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 ⊆ ℂ)
2320simp3d 1136 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
2421, 22, 23, 9ellimc2 23761 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ (𝐹 lim 𝐴) ↔ (𝐵 ∈ ℂ ∧ ∀𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)))))
2518, 24mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ ℂ ∧ ∀𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣))))
2625simprd 482 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)))
2726r19.21bi 3034 . . . . . . . . 9 ((𝜑𝑣 ∈ (TopOpen‘ℂfld)) → (𝐵𝑣 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)))
2827imp 444 . . . . . . . 8 (((𝜑𝑣 ∈ (TopOpen‘ℂfld)) ∧ 𝐵𝑣) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣))
2915, 16, 17, 28syl21anc 1438 . . . . . . 7 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣))
30 imaco 5753 . . . . . . . . . . 11 ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) = (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))))
3115ad2antrr 764 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → 𝜑)
32 simpl3r 1265 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) → (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)
3332adantr 472 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)
34 simpr 479 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)
35 simpr 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣)
36 imassrn 5587 . . . . . . . . . . . . . . . . . 18 (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ ran 𝐹
37 limccog.1 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran 𝐹 ⊆ (dom 𝐺 ∖ {𝐵}))
3836, 37syl5ss 3720 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (dom 𝐺 ∖ {𝐵}))
3938adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (dom 𝐺 ∖ {𝐵}))
4035, 39ssind 3945 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (𝑣 ∩ (dom 𝐺 ∖ {𝐵})))
41 imass2 5611 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ (𝑣 ∩ (dom 𝐺 ∖ {𝐵})) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))))
4240, 41syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))))
4342adantlr 753 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))))
44 simplr 809 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)
4543, 44sstrd 3719 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ 𝑢)
4631, 33, 34, 45syl21anc 1438 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐺 “ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴})))) ⊆ 𝑢)
4730, 46syl5eqss 3755 . . . . . . . . . 10 ((((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)
4847ex 449 . . . . . . . . 9 (((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) → ((𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣 → ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))
4948anim2d 590 . . . . . . . 8 (((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) ∧ 𝑤 ∈ (TopOpen‘ℂfld)) → ((𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → (𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))
5049reximdva 3119 . . . . . . 7 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → (∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ (𝐹 “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑣) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))
5129, 50mpd 15 . . . . . 6 ((((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))
5251rexlimdv3a 3135 . . . . 5 (((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐺 “ (𝑣 ∩ (dom 𝐺 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))
5314, 52mpd 15 . . . 4 (((𝜑𝑢 ∈ (TopOpen‘ℂfld)) ∧ 𝐶𝑢) → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢))
5453ex 449 . . 3 ((𝜑𝑢 ∈ (TopOpen‘ℂfld)) → (𝐶𝑢 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))
5554ralrimiva 3068 . 2 (𝜑 → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))
56 ffun 6161 . . . . . . 7 (𝐹:dom 𝐹⟶ℂ → Fun 𝐹)
5721, 56syl 17 . . . . . 6 (𝜑 → Fun 𝐹)
58 fdmrn 6177 . . . . . 6 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
5957, 58sylib 208 . . . . 5 (𝜑𝐹:dom 𝐹⟶ran 𝐹)
6037difss2d 3848 . . . . 5 (𝜑 → ran 𝐹 ⊆ dom 𝐺)
6159, 60fssd 6170 . . . 4 (𝜑𝐹:dom 𝐹⟶dom 𝐺)
62 fco 6171 . . . 4 ((𝐺:dom 𝐺⟶ℂ ∧ 𝐹:dom 𝐹⟶dom 𝐺) → (𝐺𝐹):dom 𝐹⟶ℂ)
636, 61, 62syl2anc 696 . . 3 (𝜑 → (𝐺𝐹):dom 𝐹⟶ℂ)
6463, 22, 23, 9ellimc2 23761 . 2 (𝜑 → (𝐶 ∈ ((𝐺𝐹) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑤 ∈ (TopOpen‘ℂfld)(𝐴𝑤 ∧ ((𝐺𝐹) “ (𝑤 ∩ (dom 𝐹 ∖ {𝐴}))) ⊆ 𝑢)))))
653, 55, 64mpbir2and 995 1 (𝜑𝐶 ∈ ((𝐺𝐹) lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wcel 2103  wral 3014  wrex 3015  cdif 3677  cin 3679  wss 3680  {csn 4285  dom cdm 5218  ran crn 5219  cima 5221  ccom 5222  Fun wfun 5995  wf 5997  cfv 6001  (class class class)co 6765  cc 10047  TopOpenctopn 16205  fldccnfld 19869   lim climc 23746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fi 8433  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-fz 12441  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-plusg 16077  df-mulr 16078  df-starv 16079  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-rest 16206  df-topn 16207  df-topgen 16227  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cnp 21155  df-xms 22247  df-ms 22248  df-limc 23750
This theorem is referenced by:  dirkercncflem2  40741  fourierdlem53  40796  fourierdlem93  40836  fourierdlem111  40854
  Copyright terms: Public domain W3C validator