MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcco Structured version   Visualization version   GIF version

Theorem limcco 23876
Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
limcco.r ((𝜑 ∧ (𝑥𝐴𝑅𝐶)) → 𝑅𝐵)
limcco.s ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
limcco.c (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋))
limcco.d (𝜑𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶))
limcco.1 (𝑦 = 𝑅𝑆 = 𝑇)
limcco.2 ((𝜑 ∧ (𝑥𝐴𝑅 = 𝐶)) → 𝑇 = 𝐷)
Assertion
Ref Expression
limcco (𝜑𝐷 ∈ ((𝑥𝐴𝑇) lim 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝑋(𝑥,𝑦)

Proof of Theorem limcco
StepHypRef Expression
1 limcco.r . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑅𝐶)) → 𝑅𝐵)
21expr 644 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑅𝐶𝑅𝐵))
32necon1bd 2950 . . . . . . 7 ((𝜑𝑥𝐴) → (¬ 𝑅𝐵𝑅 = 𝐶))
4 limccl 23858 . . . . . . . . . 10 ((𝑥𝐴𝑅) lim 𝑋) ⊆ ℂ
5 limcco.c . . . . . . . . . 10 (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋))
64, 5sseldi 3742 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
76adantr 472 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8 elsn2g 4355 . . . . . . . 8 (𝐶 ∈ ℂ → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶))
97, 8syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶))
103, 9sylibrd 249 . . . . . 6 ((𝜑𝑥𝐴) → (¬ 𝑅𝐵𝑅 ∈ {𝐶}))
1110orrd 392 . . . . 5 ((𝜑𝑥𝐴) → (𝑅𝐵𝑅 ∈ {𝐶}))
12 elun 3896 . . . . 5 (𝑅 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑅𝐵𝑅 ∈ {𝐶}))
1311, 12sylibr 224 . . . 4 ((𝜑𝑥𝐴) → 𝑅 ∈ (𝐵 ∪ {𝐶}))
14 eqid 2760 . . . 4 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
1513, 14fmptd 6549 . . 3 (𝜑 → (𝑥𝐴𝑅):𝐴⟶(𝐵 ∪ {𝐶}))
16 eqid 2760 . . . . . 6 (𝑦𝐵𝑆) = (𝑦𝐵𝑆)
17 limcco.s . . . . . 6 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
1816, 17dmmptd 6185 . . . . 5 (𝜑 → dom (𝑦𝐵𝑆) = 𝐵)
19 limcco.d . . . . . . 7 (𝜑𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶))
20 limcrcl 23857 . . . . . . 7 (𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶) → ((𝑦𝐵𝑆):dom (𝑦𝐵𝑆)⟶ℂ ∧ dom (𝑦𝐵𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
2119, 20syl 17 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆):dom (𝑦𝐵𝑆)⟶ℂ ∧ dom (𝑦𝐵𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
2221simp2d 1138 . . . . 5 (𝜑 → dom (𝑦𝐵𝑆) ⊆ ℂ)
2318, 22eqsstr3d 3781 . . . 4 (𝜑𝐵 ⊆ ℂ)
246snssd 4485 . . . 4 (𝜑 → {𝐶} ⊆ ℂ)
2523, 24unssd 3932 . . 3 (𝜑 → (𝐵 ∪ {𝐶}) ⊆ ℂ)
26 eqid 2760 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
27 eqid 2760 . . 3 ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶}))
2823, 6, 17, 27, 26limcmpt 23866 . . . 4 (𝜑 → (𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶) ↔ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶)))
2919, 28mpbid 222 . . 3 (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶))
3015, 25, 26, 27, 5, 29limccnp 23874 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) ∈ (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) lim 𝑋))
31 ssun2 3920 . . . 4 {𝐶} ⊆ (𝐵 ∪ {𝐶})
32 snssg 4459 . . . . 5 (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋) → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶})))
335, 32syl 17 . . . 4 (𝜑 → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶})))
3431, 33mpbiri 248 . . 3 (𝜑𝐶 ∈ (𝐵 ∪ {𝐶}))
35 iftrue 4236 . . . 4 (𝑦 = 𝐶 → if(𝑦 = 𝐶, 𝐷, 𝑆) = 𝐷)
36 eqid 2760 . . . 4 (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))
3735, 36fvmptg 6443 . . 3 ((𝐶 ∈ (𝐵 ∪ {𝐶}) ∧ 𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶)) → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷)
3834, 19, 37syl2anc 696 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷)
39 eqidd 2761 . . . . 5 (𝜑 → (𝑥𝐴𝑅) = (𝑥𝐴𝑅))
40 eqidd 2761 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)))
41 eqeq1 2764 . . . . . 6 (𝑦 = 𝑅 → (𝑦 = 𝐶𝑅 = 𝐶))
42 limcco.1 . . . . . 6 (𝑦 = 𝑅𝑆 = 𝑇)
4341, 42ifbieq2d 4255 . . . . 5 (𝑦 = 𝑅 → if(𝑦 = 𝐶, 𝐷, 𝑆) = if(𝑅 = 𝐶, 𝐷, 𝑇))
4413, 39, 40, 43fmptco 6560 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)))
45 ifid 4269 . . . . . 6 if(𝑅 = 𝐶, 𝑇, 𝑇) = 𝑇
46 limcco.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑅 = 𝐶)) → 𝑇 = 𝐷)
4746anassrs 683 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑅 = 𝐶) → 𝑇 = 𝐷)
4847ifeq1da 4260 . . . . . 6 ((𝜑𝑥𝐴) → if(𝑅 = 𝐶, 𝑇, 𝑇) = if(𝑅 = 𝐶, 𝐷, 𝑇))
4945, 48syl5reqr 2809 . . . . 5 ((𝜑𝑥𝐴) → if(𝑅 = 𝐶, 𝐷, 𝑇) = 𝑇)
5049mpteq2dva 4896 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)) = (𝑥𝐴𝑇))
5144, 50eqtrd 2794 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴𝑇))
5251oveq1d 6829 . 2 (𝜑 → (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) lim 𝑋) = ((𝑥𝐴𝑇) lim 𝑋))
5330, 38, 523eltr3d 2853 1 (𝜑𝐷 ∈ ((𝑥𝐴𝑇) lim 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  cun 3713  wss 3715  ifcif 4230  {csn 4321  cmpt 4881  dom cdm 5266  ccom 5270  wf 6045  cfv 6049  (class class class)co 6814  cc 10146  t crest 16303  TopOpenctopn 16304  fldccnfld 19968   CnP ccnp 21251   lim climc 23845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fi 8484  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-fz 12540  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-plusg 16176  df-mulr 16177  df-starv 16178  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-rest 16305  df-topn 16306  df-topgen 16326  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cnp 21254  df-xms 22346  df-ms 22347  df-limc 23849
This theorem is referenced by:  dvcobr  23928  dvcnvlem  23958  lhop2  23997  fourierdlem60  40904  fourierdlem61  40905  fourierdlem62  40906  fourierdlem73  40917  fourierdlem76  40920
  Copyright terms: Public domain W3C validator