MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limccnp2 Structured version   Visualization version   GIF version

Theorem limccnp2 23701
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
limccnp2.r ((𝜑𝑥𝐴) → 𝑅𝑋)
limccnp2.s ((𝜑𝑥𝐴) → 𝑆𝑌)
limccnp2.x (𝜑𝑋 ⊆ ℂ)
limccnp2.y (𝜑𝑌 ⊆ ℂ)
limccnp2.k 𝐾 = (TopOpen‘ℂfld)
limccnp2.j 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))
limccnp2.c (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))
limccnp2.d (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))
limccnp2.h (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
Assertion
Ref Expression
limccnp2 (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐻   𝜑,𝑥   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem limccnp2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limccnp2.h . . . . . . . . . . 11 (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
2 eqid 2651 . . . . . . . . . . . 12 𝐽 = 𝐽
32cnprcl 21097 . . . . . . . . . . 11 (𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩) → ⟨𝐶, 𝐷⟩ ∈ 𝐽)
41, 3syl 17 . . . . . . . . . 10 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝐽)
5 limccnp2.j . . . . . . . . . . . 12 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))
6 limccnp2.k . . . . . . . . . . . . . . 15 𝐾 = (TopOpen‘ℂfld)
76cnfldtopon 22633 . . . . . . . . . . . . . 14 𝐾 ∈ (TopOn‘ℂ)
8 txtopon 21442 . . . . . . . . . . . . . 14 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)))
97, 7, 8mp2an 708 . . . . . . . . . . . . 13 (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ))
10 limccnp2.x . . . . . . . . . . . . . 14 (𝜑𝑋 ⊆ ℂ)
11 limccnp2.y . . . . . . . . . . . . . 14 (𝜑𝑌 ⊆ ℂ)
12 xpss12 5158 . . . . . . . . . . . . . 14 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
1310, 11, 12syl2anc 694 . . . . . . . . . . . . 13 (𝜑 → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
14 resttopon 21013 . . . . . . . . . . . . 13 (((𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌)))
159, 13, 14sylancr 696 . . . . . . . . . . . 12 (𝜑 → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌)))
165, 15syl5eqel 2734 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘(𝑋 × 𝑌)))
17 toponuni 20767 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = 𝐽)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 × 𝑌) = 𝐽)
194, 18eleqtrrd 2733 . . . . . . . . 9 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
20 opelxp 5180 . . . . . . . . 9 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) ↔ (𝐶𝑋𝐷𝑌))
2119, 20sylib 208 . . . . . . . 8 (𝜑 → (𝐶𝑋𝐷𝑌))
2221simpld 474 . . . . . . 7 (𝜑𝐶𝑋)
2322ad2antrr 762 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐶𝑋)
24 simpll 805 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
25 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → 𝑥 ∈ (𝐴 ∪ {𝐵}))
26 elun 3786 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥𝐴𝑥 ∈ {𝐵}))
2725, 26sylib 208 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥𝐴𝑥 ∈ {𝐵}))
2827ord 391 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥𝐴𝑥 ∈ {𝐵}))
29 elsni 4227 . . . . . . . . . 10 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
3028, 29syl6 35 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥𝐴𝑥 = 𝐵))
3130con1d 139 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥 = 𝐵𝑥𝐴))
3231imp 444 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐴)
33 limccnp2.r . . . . . . 7 ((𝜑𝑥𝐴) → 𝑅𝑋)
3424, 32, 33syl2anc 694 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑅𝑋)
3523, 34ifclda 4153 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐶, 𝑅) ∈ 𝑋)
3621simprd 478 . . . . . . 7 (𝜑𝐷𝑌)
3736ad2antrr 762 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐷𝑌)
38 limccnp2.s . . . . . . 7 ((𝜑𝑥𝐴) → 𝑆𝑌)
3924, 32, 38syl2anc 694 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑆𝑌)
4037, 39ifclda 4153 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐷, 𝑆) ∈ 𝑌)
41 opelxpi 5182 . . . . 5 ((if(𝑥 = 𝐵, 𝐶, 𝑅) ∈ 𝑋 ∧ if(𝑥 = 𝐵, 𝐷, 𝑆) ∈ 𝑌) → ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ ∈ (𝑋 × 𝑌))
4235, 40, 41syl2anc 694 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ ∈ (𝑋 × 𝑌))
43 eqidd 2652 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩))
447a1i 11 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ℂ))
45 cnpf2 21102 . . . . . 6 ((𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩)) → 𝐻:(𝑋 × 𝑌)⟶ℂ)
4616, 44, 1, 45syl3anc 1366 . . . . 5 (𝜑𝐻:(𝑋 × 𝑌)⟶ℂ)
4746feqmptd 6288 . . . 4 (𝜑𝐻 = (𝑦 ∈ (𝑋 × 𝑌) ↦ (𝐻𝑦)))
48 fveq2 6229 . . . . 5 (𝑦 = ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ → (𝐻𝑦) = (𝐻‘⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩))
49 df-ov 6693 . . . . . 6 (if(𝑥 = 𝐵, 𝐶, 𝑅)𝐻if(𝑥 = 𝐵, 𝐷, 𝑆)) = (𝐻‘⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)
50 ovif12 6781 . . . . . 6 (if(𝑥 = 𝐵, 𝐶, 𝑅)𝐻if(𝑥 = 𝐵, 𝐷, 𝑆)) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))
5149, 50eqtr3i 2675 . . . . 5 (𝐻‘⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))
5248, 51syl6eq 2701 . . . 4 (𝑦 = ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ → (𝐻𝑦) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆)))
5342, 43, 47, 52fmptco 6436 . . 3 (𝜑 → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))))
54 eqid 2651 . . . . . . . . . . 11 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
5554, 33dmmptd 6062 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝑅) = 𝐴)
56 limccnp2.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))
57 limcrcl 23683 . . . . . . . . . . . 12 (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵) → ((𝑥𝐴𝑅):dom (𝑥𝐴𝑅)⟶ℂ ∧ dom (𝑥𝐴𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
5856, 57syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐴𝑅):dom (𝑥𝐴𝑅)⟶ℂ ∧ dom (𝑥𝐴𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
5958simp2d 1094 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝑅) ⊆ ℂ)
6055, 59eqsstr3d 3673 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
6158simp3d 1095 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
6261snssd 4372 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ ℂ)
6360, 62unssd 3822 . . . . . . . 8 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
64 resttopon 21013 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
657, 63, 64sylancr 696 . . . . . . 7 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
66 ssun2 3810 . . . . . . . 8 {𝐵} ⊆ (𝐴 ∪ {𝐵})
67 snssg 4347 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
6861, 67syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
6966, 68mpbiri 248 . . . . . . 7 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
7010adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑋 ⊆ ℂ)
7170, 33sseldd 3637 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
72 eqid 2651 . . . . . . . . 9 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
7360, 61, 71, 72, 6limcmpt 23692 . . . . . . . 8 (𝜑 → (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, 𝑅)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
7456, 73mpbid 222 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, 𝑅)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
75 limccnp2.d . . . . . . . 8 (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))
7611adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑌 ⊆ ℂ)
7776, 38sseldd 3637 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑆 ∈ ℂ)
7860, 61, 77, 72, 6limcmpt 23692 . . . . . . . 8 (𝜑 → (𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐷, 𝑆)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
7975, 78mpbid 222 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐷, 𝑆)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
8065, 44, 44, 69, 74, 79txcnp 21471 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵))
819topontopi 20768 . . . . . . . 8 (𝐾 ×t 𝐾) ∈ Top
8281a1i 11 . . . . . . 7 (𝜑 → (𝐾 ×t 𝐾) ∈ Top)
83 eqid 2651 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)
8442, 83fmptd 6425 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩):(𝐴 ∪ {𝐵})⟶(𝑋 × 𝑌))
85 toponuni 20767 . . . . . . . . . 10 ((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
8665, 85syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
8786feq2d 6069 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩):(𝐴 ∪ {𝐵})⟶(𝑋 × 𝑌) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩): (𝐾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌)))
8884, 87mpbid 222 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩): (𝐾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌))
89 eqid 2651 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
909toponunii 20769 . . . . . . . 8 (ℂ × ℂ) = (𝐾 ×t 𝐾)
9189, 90cnprest2 21142 . . . . . . 7 (((𝐾 ×t 𝐾) ∈ Top ∧ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩): (𝐾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵)))
9282, 88, 13, 91syl3anc 1366 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵)))
9380, 92mpbid 222 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵))
945oveq2i 6701 . . . . . 6 ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽) = ((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))
9594fveq1i 6230 . . . . 5 (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵)
9693, 95syl6eleqr 2741 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵))
97 iftrue 4125 . . . . . . . . 9 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐶, 𝑅) = 𝐶)
98 iftrue 4125 . . . . . . . . 9 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐷, 𝑆) = 𝐷)
9997, 98opeq12d 4441 . . . . . . . 8 (𝑥 = 𝐵 → ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ = ⟨𝐶, 𝐷⟩)
100 opex 4962 . . . . . . . 8 𝐶, 𝐷⟩ ∈ V
10199, 83, 100fvmpt 6321 . . . . . . 7 (𝐵 ∈ (𝐴 ∪ {𝐵}) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵) = ⟨𝐶, 𝐷⟩)
10269, 101syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵) = ⟨𝐶, 𝐷⟩)
103102fveq2d 6233 . . . . 5 (𝜑 → ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵)) = ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
1041, 103eleqtrrd 2733 . . . 4 (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵)))
105 cnpco 21119 . . . 4 (((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵))) → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
10696, 104, 105syl2anc 694 . . 3 (𝜑 → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
10753, 106eqeltrrd 2731 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
10846adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐻:(𝑋 × 𝑌)⟶ℂ)
109108, 33, 38fovrnd 6848 . . 3 ((𝜑𝑥𝐴) → (𝑅𝐻𝑆) ∈ ℂ)
11060, 61, 109, 72, 6limcmpt 23692 . 2 (𝜑 → ((𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
111107, 110mpbird 247 1 (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  cun 3605  wss 3607  ifcif 4119  {csn 4210  cop 4216   cuni 4468  cmpt 4762   × cxp 5141  dom cdm 5143  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  t crest 16128  TopOpenctopn 16129  fldccnfld 19794  Topctop 20746  TopOnctopon 20763   CnP ccnp 21077   ×t ctx 21411   lim climc 23671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cnp 21080  df-tx 21413  df-xms 22172  df-ms 22173  df-limc 23675
This theorem is referenced by:  dvcnp2  23728  dvaddbr  23746  dvmulbr  23747  dvcobr  23754  lhop1lem  23821  taylthlem2  24173
  Copyright terms: Public domain W3C validator