Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4b Structured version   Visualization version   GIF version

Theorem lighneallem4b 41851
Description: Lemma 2 for lighneallem4 41852. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4b ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem lighneallem4b
StepHypRef Expression
1 2z 11447 . . 3 2 ∈ ℤ
21a1i 11 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 2 ∈ ℤ)
3 fzfid 12812 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (0...(𝑀 − 1)) ∈ Fin)
4 neg1z 11451 . . . . . . 7 -1 ∈ ℤ
5 elfznn0 12471 . . . . . . 7 (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0)
6 zexpcl 12915 . . . . . . 7 ((-1 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
74, 5, 6sylancr 696 . . . . . 6 (𝑘 ∈ (0...(𝑀 − 1)) → (-1↑𝑘) ∈ ℤ)
87adantl 481 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (-1↑𝑘) ∈ ℤ)
9 eluzge2nn0 11765 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
109adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ0)
1110adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝐴 ∈ ℕ0)
125adantl 481 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝑘 ∈ ℕ0)
1311, 12nn0expcld 13071 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴𝑘) ∈ ℕ0)
1413nn0zd 11518 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴𝑘) ∈ ℤ)
158, 14zmulcld 11526 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
163, 15fsumzcl 14510 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
17163adant3 1101 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
18 simp1 1081 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝐴 ∈ (ℤ‘2))
19 3z 11448 . . . . 5 3 ∈ ℤ
2019a1i 11 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ∈ ℤ)
21 eluzelz 11735 . . . . 5 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
22213ad2ant2 1103 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
23 eluz2 11731 . . . . . . 7 (𝑀 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀))
24 2re 11128 . . . . . . . . . . . 12 2 ∈ ℝ
2524a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 2 ∈ ℝ)
26 zre 11419 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2725, 26leloed 10218 . . . . . . . . . 10 (𝑀 ∈ ℤ → (2 ≤ 𝑀 ↔ (2 < 𝑀 ∨ 2 = 𝑀)))
28 zltp1le 11465 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
291, 28mpan 706 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
3029biimpd 219 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (2 < 𝑀 → (2 + 1) ≤ 𝑀))
31 df-3 11118 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
3231breq1i 4692 . . . . . . . . . . . . . . 15 (3 ≤ 𝑀 ↔ (2 + 1) ≤ 𝑀)
3330, 32syl6ibr 242 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (2 < 𝑀 → 3 ≤ 𝑀))
3433a1i 11 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑀 → (𝑀 ∈ ℤ → (2 < 𝑀 → 3 ≤ 𝑀)))
3534com13 88 . . . . . . . . . . . 12 (2 < 𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
36 z2even 15153 . . . . . . . . . . . . . . 15 2 ∥ 2
37 breq2 4689 . . . . . . . . . . . . . . 15 (2 = 𝑀 → (2 ∥ 2 ↔ 2 ∥ 𝑀))
3836, 37mpbii 223 . . . . . . . . . . . . . 14 (2 = 𝑀 → 2 ∥ 𝑀)
3938pm2.24d 147 . . . . . . . . . . . . 13 (2 = 𝑀 → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4039a1d 25 . . . . . . . . . . . 12 (2 = 𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4135, 40jaoi 393 . . . . . . . . . . 11 ((2 < 𝑀 ∨ 2 = 𝑀) → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4241com12 32 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((2 < 𝑀 ∨ 2 = 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4327, 42sylbid 230 . . . . . . . . 9 (𝑀 ∈ ℤ → (2 ≤ 𝑀 → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4443imp 444 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
45443adant1 1099 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4623, 45sylbi 207 . . . . . 6 (𝑀 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4746imp 444 . . . . 5 ((𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀)
48473adant1 1099 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀)
49 eluz2 11731 . . . 4 (𝑀 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 3 ≤ 𝑀))
5020, 22, 48, 49syl3anbrc 1265 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ (ℤ‘3))
51 eluzelcn 11737 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
52513ad2ant1 1102 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝐴 ∈ ℂ)
53 eluz2nn 11764 . . . . . . . 8 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
54533ad2ant2 1103 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℕ)
55 simp3 1083 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
5652, 54, 55oddpwp1fsum 15162 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴𝑀) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))))
5756eqcomd 2657 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1))
58 eluzge2nn0 11765 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ0)
5958adantl 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → 𝑀 ∈ ℕ0)
6010, 59nn0expcld 13071 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (𝐴𝑀) ∈ ℕ0)
6160nn0cnd 11391 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (𝐴𝑀) ∈ ℂ)
62 peano2cn 10246 . . . . . . . 8 ((𝐴𝑀) ∈ ℂ → ((𝐴𝑀) + 1) ∈ ℂ)
6361, 62syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → ((𝐴𝑀) + 1) ∈ ℂ)
64633adant3 1101 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴𝑀) + 1) ∈ ℂ)
6517zcnd 11521 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
66 eluz2nn 11764 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
6766peano2nnd 11075 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℕ)
6867nncnd 11074 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℂ)
6967nnne0d 11103 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≠ 0)
7068, 69jca 553 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0))
71703ad2ant1 1102 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0))
72 divmul 10726 . . . . . 6 ((((𝐴𝑀) + 1) ∈ ℂ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ ∧ ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0)) → ((((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1)))
7364, 65, 71, 72syl3anc 1366 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1)))
7457, 73mpbird 247 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → (((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
7574eqcomd 2657 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) = (((𝐴𝑀) + 1) / (𝐴 + 1)))
76 lighneallem4a 41850 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
7718, 50, 75, 76syl3anc 1366 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
78 eluz2 11731 . 2 𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ ∧ 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))))
792, 17, 77, 78syl3anbrc 1265 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  0cn0 11330  cz 11415  cuz 11725  ...cfz 12364  cexp 12900  Σcsu 14460  cdvds 15027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028
This theorem is referenced by:  lighneallem4  41852
  Copyright terms: Public domain W3C validator