![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lidlrsppropd | Structured version Visualization version GIF version |
Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
lidlpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
lidlpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
lidlpropd.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
lidlpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lidlpropd.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) |
lidlpropd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
lidlrsppropd | ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlpropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | rlmbas 19418 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(ringLMod‘𝐾)) | |
3 | 1, 2 | syl6eq 2811 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐾))) |
4 | lidlpropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
5 | rlmbas 19418 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(ringLMod‘𝐿)) | |
6 | 4, 5 | syl6eq 2811 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐿))) |
7 | lidlpropd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
8 | lidlpropd.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
9 | rlmplusg 19419 | . . . . . 6 ⊢ (+g‘𝐾) = (+g‘(ringLMod‘𝐾)) | |
10 | 9 | oveqi 6828 | . . . . 5 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦) |
11 | rlmplusg 19419 | . . . . . 6 ⊢ (+g‘𝐿) = (+g‘(ringLMod‘𝐿)) | |
12 | 11 | oveqi 6828 | . . . . 5 ⊢ (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦) |
13 | 8, 10, 12 | 3eqtr3g 2818 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)) |
14 | rlmvsca 19425 | . . . . . 6 ⊢ (.r‘𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)) | |
15 | 14 | oveqi 6828 | . . . . 5 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) |
16 | lidlpropd.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) | |
17 | 15, 16 | syl5eqelr 2845 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊) |
18 | lidlpropd.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
19 | rlmvsca 19425 | . . . . . 6 ⊢ (.r‘𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)) | |
20 | 19 | oveqi 6828 | . . . . 5 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦) |
21 | 18, 15, 20 | 3eqtr3g 2818 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦)) |
22 | baseid 16142 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
23 | eqid 2761 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
24 | 22, 23 | strfvi 16136 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘( I ‘𝐾)) |
25 | rlmsca2 19424 | . . . . . . 7 ⊢ ( I ‘𝐾) = (Scalar‘(ringLMod‘𝐾)) | |
26 | 25 | fveq2i 6357 | . . . . . 6 ⊢ (Base‘( I ‘𝐾)) = (Base‘(Scalar‘(ringLMod‘𝐾))) |
27 | 24, 26 | eqtri 2783 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))) |
28 | 1, 27 | syl6eq 2811 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾)))) |
29 | eqid 2761 | . . . . . . 7 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
30 | 22, 29 | strfvi 16136 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘( I ‘𝐿)) |
31 | rlmsca2 19424 | . . . . . . 7 ⊢ ( I ‘𝐿) = (Scalar‘(ringLMod‘𝐿)) | |
32 | 31 | fveq2i 6357 | . . . . . 6 ⊢ (Base‘( I ‘𝐿)) = (Base‘(Scalar‘(ringLMod‘𝐿))) |
33 | 30, 32 | eqtri 2783 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))) |
34 | 4, 33 | syl6eq 2811 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿)))) |
35 | 3, 6, 7, 13, 17, 21, 28, 34 | lsspropd 19240 | . . 3 ⊢ (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿))) |
36 | lidlval 19415 | . . 3 ⊢ (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)) | |
37 | lidlval 19415 | . . 3 ⊢ (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)) | |
38 | 35, 36, 37 | 3eqtr4g 2820 | . 2 ⊢ (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿)) |
39 | fvexd 6366 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝐾) ∈ V) | |
40 | fvexd 6366 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝐿) ∈ V) | |
41 | 3, 6, 7, 13, 17, 21, 28, 34, 39, 40 | lsppropd 19241 | . . 3 ⊢ (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿))) |
42 | rspval 19416 | . . 3 ⊢ (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)) | |
43 | rspval 19416 | . . 3 ⊢ (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)) | |
44 | 41, 42, 43 | 3eqtr4g 2820 | . 2 ⊢ (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿)) |
45 | 38, 44 | jca 555 | 1 ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ⊆ wss 3716 I cid 5174 ‘cfv 6050 (class class class)co 6815 ndxcnx 16077 Basecbs 16080 +gcplusg 16164 .rcmulr 16165 Scalarcsca 16167 ·𝑠 cvsca 16168 LSubSpclss 19155 LSpanclspn 19194 ringLModcrglmod 19392 LIdealclidl 19393 RSpancrsp 19394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-sca 16180 df-vsca 16181 df-ip 16182 df-lss 19156 df-lsp 19195 df-sra 19395 df-rgmod 19396 df-lidl 19397 df-rsp 19398 |
This theorem is referenced by: crngridl 19461 |
Copyright terms: Public domain | W3C validator |