![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lidlmmgm | Structured version Visualization version GIF version |
Description: The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
lidlabl.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
lidlabl.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
Ref | Expression |
---|---|
lidlmmgm | ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | . . . . . . . 8 ⊢ 𝐿 = (LIdeal‘𝑅) | |
2 | lidlabl.i | . . . . . . . 8 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
3 | 1, 2 | lidlbas 42451 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
4 | eleq1a 2834 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿)) | |
5 | 3, 4 | mpd 15 | . . . . . 6 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ∈ 𝐿) |
6 | 5 | anim2i 594 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿)) |
7 | 6 | adantr 472 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿)) |
8 | 1, 2 | lidlssbas 42450 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
9 | 8 | adantl 473 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (Base‘𝐼) ⊆ (Base‘𝑅)) |
10 | 9 | sseld 3743 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅))) |
11 | 10 | com12 32 | . . . . . 6 ⊢ (𝑎 ∈ (Base‘𝐼) → ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝑎 ∈ (Base‘𝑅))) |
12 | 11 | adantr 472 | . . . . 5 ⊢ ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝑎 ∈ (Base‘𝑅))) |
13 | 12 | impcom 445 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑎 ∈ (Base‘𝑅)) |
14 | simprr 813 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑏 ∈ (Base‘𝐼)) | |
15 | eqid 2760 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | eqid 2760 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
17 | 1, 15, 16 | lidlmcl 19439 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
18 | 7, 13, 14, 17 | syl12anc 1475 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
19 | 18 | ralrimivva 3109 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
20 | fvex 6363 | . . . 4 ⊢ (mulGrp‘𝐼) ∈ V | |
21 | eqid 2760 | . . . . . 6 ⊢ (mulGrp‘𝐼) = (mulGrp‘𝐼) | |
22 | eqid 2760 | . . . . . 6 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
23 | 21, 22 | mgpbas 18715 | . . . . 5 ⊢ (Base‘𝐼) = (Base‘(mulGrp‘𝐼)) |
24 | eqid 2760 | . . . . . 6 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
25 | 21, 24 | mgpplusg 18713 | . . . . 5 ⊢ (.r‘𝐼) = (+g‘(mulGrp‘𝐼)) |
26 | 23, 25 | ismgm 17464 | . . . 4 ⊢ ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
27 | 20, 26 | mp1i 13 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
28 | 2, 16 | ressmulr 16228 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝑅) = (.r‘𝐼)) |
29 | 28 | eqcomd 2766 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝐼) = (.r‘𝑅)) |
30 | 29 | adantl 473 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (.r‘𝐼) = (.r‘𝑅)) |
31 | 30 | oveqdr 6838 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝐼)𝑏) = (𝑎(.r‘𝑅)𝑏)) |
32 | 31 | eleq1d 2824 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
33 | 32 | 2ralbidva 3126 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
34 | 27, 33 | bitrd 268 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
35 | 19, 34 | mpbird 247 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 ⊆ wss 3715 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 ↾s cress 16080 .rcmulr 16164 Mgmcmgm 17461 mulGrpcmgp 18709 Ringcrg 18767 LIdealclidl 19392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-ip 16181 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-grp 17646 df-minusg 17647 df-sbg 17648 df-subg 17812 df-mgp 18710 df-ur 18722 df-ring 18769 df-subrg 19000 df-lmod 19087 df-lss 19155 df-sra 19394 df-rgmod 19395 df-lidl 19396 |
This theorem is referenced by: lidlmsgrp 42454 |
Copyright terms: Public domain | W3C validator |