Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidldomn1 Structured version   Visualization version   GIF version

Theorem lidldomn1 42246
Description: If a (left) ideal (which is not the zero ideal) of a domain has a multiplicative identity element, the identity element is the identity of the domain. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidldomn1.l 𝐿 = (LIdeal‘𝑅)
lidldomn1.t · = (.r𝑅)
lidldomn1.1 1 = (1r𝑅)
lidldomn1.0 0 = (0g𝑅)
Assertion
Ref Expression
lidldomn1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑈   𝑥, ·
Allowed substitution hints:   𝑅(𝑥)   1 (𝑥)   𝐿(𝑥)   0 (𝑥)

Proof of Theorem lidldomn1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 domnring 19344 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
213ad2ant1 1102 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑅 ∈ Ring)
3 simp2l 1107 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈𝐿)
4 simp2r 1108 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈 ≠ { 0 })
5 lidldomn1.l . . . 4 𝐿 = (LIdeal‘𝑅)
6 lidldomn1.0 . . . 4 0 = (0g𝑅)
75, 6lidlnz 19276 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿𝑈 ≠ { 0 }) → ∃𝑦𝑈 𝑦0 )
82, 3, 4, 7syl3anc 1366 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → ∃𝑦𝑈 𝑦0 )
9 oveq2 6698 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐼 · 𝑥) = (𝐼 · 𝑦))
10 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2666 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐼 · 𝑥) = 𝑥 ↔ (𝐼 · 𝑦) = 𝑦))
12 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 · 𝐼) = (𝑦 · 𝐼))
1312, 10eqeq12d 2666 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥 · 𝐼) = 𝑥 ↔ (𝑦 · 𝐼) = 𝑦))
1411, 13anbi12d 747 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦)))
1514rspcva 3338 . . . . . . . 8 ((𝑦𝑈 ∧ ∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) → ((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦))
162adantr 480 . . . . . . . . . . . . . 14 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Ring)
17 eqid 2651 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) = (Base‘𝑅)
1817, 5lidlss 19258 . . . . . . . . . . . . . . . . . . . 20 (𝑈𝐿𝑈 ⊆ (Base‘𝑅))
1918adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑈𝐿𝑈 ≠ { 0 }) → 𝑈 ⊆ (Base‘𝑅))
20193ad2ant2 1103 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈 ⊆ (Base‘𝑅))
2120sseld 3635 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑦𝑈𝑦 ∈ (Base‘𝑅)))
2221com12 32 . . . . . . . . . . . . . . . 16 (𝑦𝑈 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑦 ∈ (Base‘𝑅)))
2322adantr 480 . . . . . . . . . . . . . . 15 ((𝑦𝑈𝑦0 ) → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑦 ∈ (Base‘𝑅)))
2423impcom 445 . . . . . . . . . . . . . 14 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑦 ∈ (Base‘𝑅))
25 lidldomn1.t . . . . . . . . . . . . . . 15 · = (.r𝑅)
26 lidldomn1.1 . . . . . . . . . . . . . . 15 1 = (1r𝑅)
2717, 25, 26ringlidm 18617 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ( 1 · 𝑦) = 𝑦)
2816, 24, 27syl2anc 694 . . . . . . . . . . . . 13 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ( 1 · 𝑦) = 𝑦)
29 eqeq2 2662 . . . . . . . . . . . . . . . 16 (𝑦 = ( 1 · 𝑦) → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
3029eqcoms 2659 . . . . . . . . . . . . . . 15 (( 1 · 𝑦) = 𝑦 → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
3130adantl 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
32 ringgrp 18598 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
331, 32syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Domn → 𝑅 ∈ Grp)
34333ad2ant1 1102 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑅 ∈ Grp)
3534adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Grp)
3619sseld 3635 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈𝐿𝑈 ≠ { 0 }) → (𝐼𝑈𝐼 ∈ (Base‘𝑅)))
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Domn → ((𝑈𝐿𝑈 ≠ { 0 }) → (𝐼𝑈𝐼 ∈ (Base‘𝑅))))
38373imp 1275 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 ∈ (Base‘𝑅))
3938adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝐼 ∈ (Base‘𝑅))
4017, 25ringcl 18607 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐼 · 𝑦) ∈ (Base‘𝑅))
4116, 39, 24, 40syl3anc 1366 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝐼 · 𝑦) ∈ (Base‘𝑅))
4217, 26ringidcl 18614 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
431, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Domn → 1 ∈ (Base‘𝑅))
44433ad2ant1 1102 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 1 ∈ (Base‘𝑅))
4544adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 1 ∈ (Base‘𝑅))
4617, 25ringcl 18607 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ( 1 · 𝑦) ∈ (Base‘𝑅))
4716, 45, 24, 46syl3anc 1366 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ( 1 · 𝑦) ∈ (Base‘𝑅))
48 eqid 2651 . . . . . . . . . . . . . . . . . 18 (-g𝑅) = (-g𝑅)
4917, 6, 48grpsubeq0 17548 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ (𝐼 · 𝑦) ∈ (Base‘𝑅) ∧ ( 1 · 𝑦) ∈ (Base‘𝑅)) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
5035, 41, 47, 49syl3anc 1366 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
5117, 25, 48, 16, 39, 45, 24rngsubdir 18646 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) · 𝑦) = ((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)))
5251eqeq1d 2653 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ))
53 simpl1 1084 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Domn)
5434, 38, 443jca 1261 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)))
5554adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)))
5617, 48grpsubcl 17542 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅))
5817, 25, 6domneq0 19345 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 )))
5953, 57, 24, 58syl3anc 1366 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 )))
6017, 6, 48grpsubeq0 17548 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
6155, 60syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
6261biimpd 219 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
63 eqneqall 2834 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → (𝑦0𝐼 = 1 ))
6463com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑦0 → (𝑦 = 0𝐼 = 1 ))
6564adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑈𝑦0 ) → (𝑦 = 0𝐼 = 1 ))
6665adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝑦 = 0𝐼 = 1 ))
6762, 66jaod 394 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 ) → 𝐼 = 1 ))
6859, 67sylbid 230 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0𝐼 = 1 ))
6952, 68sylbird 250 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0𝐼 = 1 ))
7050, 69sylbird 250 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼 · 𝑦) = ( 1 · 𝑦) → 𝐼 = 1 ))
7170adantr 480 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = ( 1 · 𝑦) → 𝐼 = 1 ))
7231, 71sylbid 230 . . . . . . . . . . . . 13 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 ))
7328, 72mpdan 703 . . . . . . . . . . . 12 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 ))
7473ex 449 . . . . . . . . . . 11 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → ((𝑦𝑈𝑦0 ) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 )))
7574com13 88 . . . . . . . . . 10 ((𝐼 · 𝑦) = 𝑦 → ((𝑦𝑈𝑦0 ) → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 )))
7675expd 451 . . . . . . . . 9 ((𝐼 · 𝑦) = 𝑦 → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7776adantr 480 . . . . . . . 8 (((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7815, 77syl 17 . . . . . . 7 ((𝑦𝑈 ∧ ∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7978ex 449 . . . . . 6 (𝑦𝑈 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 )))))
8079pm2.43b 55 . . . . 5 (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
8180com14 96 . . . 4 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑦𝑈 → (𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))))
8281imp 444 . . 3 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ 𝑦𝑈) → (𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )))
8382rexlimdva 3060 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∃𝑦𝑈 𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )))
848, 83mpd 15 1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  {csn 4210  cfv 5926  (class class class)co 6690  Basecbs 15904  .rcmulr 15989  0gc0g 16147  Grpcgrp 17469  -gcsg 17471  1rcur 18547  Ringcrg 18593  LIdealclidl 19218  Domncdomn 19328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-nzr 19306  df-domn 19332
This theorem is referenced by:  uzlidlring  42254
  Copyright terms: Public domain W3C validator