Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmod2i2 Structured version   Visualization version   GIF version

Theorem lhpmod2i2 35846
Description: Modular law for hyperplanes analogous to atmod2i2 35670 for atoms. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
lhpmod.b 𝐵 = (Base‘𝐾)
lhpmod.l = (le‘𝐾)
lhpmod.j = (join‘𝐾)
lhpmod.m = (meet‘𝐾)
lhpmod.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmod2i2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))

Proof of Theorem lhpmod2i2
StepHypRef Expression
1 simp1l 1240 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
2 simp1r 1241 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑊𝐻)
3 eqid 2761 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
4 eqid 2761 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lhpmod.h . . . . 5 𝐻 = (LHyp‘𝐾)
63, 4, 5lhpocat 35825 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
71, 2, 6syl2anc 696 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
8 hlop 35171 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ OP)
10 simp2l 1242 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑋𝐵)
11 lhpmod.b . . . . 5 𝐵 = (Base‘𝐾)
1211, 3opoccl 35003 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
139, 10, 12syl2anc 696 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
14 simp2r 1243 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌𝐵)
1511, 3opoccl 35003 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
169, 14, 15syl2anc 696 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
17 simp3 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌 𝑋)
18 lhpmod.l . . . . . 6 = (le‘𝐾)
1911, 18, 3oplecon3b 35009 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
209, 14, 10, 19syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑌 𝑋 ↔ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2117, 20mpbid 222 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))
22 lhpmod.j . . . 4 = (join‘𝐾)
23 lhpmod.m . . . 4 = (meet‘𝐾)
2411, 18, 22, 23, 4atmod1i2 35667 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
251, 7, 13, 16, 21, 24syl131anc 1490 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
26 hllat 35172 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
271, 26syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ Lat)
2811, 5lhpbase 35806 . . . . . . 7 (𝑊𝐻𝑊𝐵)
292, 28syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑊𝐵)
3011, 23latmcl 17274 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
3127, 10, 29, 30syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 𝑊) ∈ 𝐵)
3211, 22latjcl 17273 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑊) 𝑌) ∈ 𝐵)
3327, 31, 14, 32syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) ∈ 𝐵)
3411, 22latjcl 17273 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑊𝐵𝑌𝐵) → (𝑊 𝑌) ∈ 𝐵)
3527, 29, 14, 34syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑊 𝑌) ∈ 𝐵)
3611, 23latmcl 17274 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑊 𝑌) ∈ 𝐵) → (𝑋 (𝑊 𝑌)) ∈ 𝐵)
3727, 10, 35, 36syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 (𝑊 𝑌)) ∈ 𝐵)
3811, 3opcon3b 35005 . . . 4 ((𝐾 ∈ OP ∧ ((𝑋 𝑊) 𝑌) ∈ 𝐵 ∧ (𝑋 (𝑊 𝑌)) ∈ 𝐵) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌))))
399, 33, 37, 38syl3anc 1477 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌))))
40 hlol 35170 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
411, 40syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ OL)
4211, 22, 23, 3oldmm1 35026 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (𝑊 𝑌) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))))
4341, 10, 35, 42syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))))
4411, 22, 23, 3oldmj1 35030 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑊𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑊 𝑌)) = (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌)))
4541, 29, 14, 44syl3anc 1477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑊 𝑌)) = (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌)))
4645oveq2d 6831 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))))
4743, 46eqtrd 2795 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))))
4811, 22, 23, 3oldmj1 35030 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)))
4941, 31, 14, 48syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)))
5011, 22, 23, 3oldmm1 35026 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑊𝐵) → ((oc‘𝐾)‘(𝑋 𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
5141, 10, 29, 50syl3anc 1477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
5251oveq1d 6830 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
5349, 52eqtrd 2795 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
5447, 53eqeq12d 2776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) ↔ (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌))))
5539, 54bitrd 268 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌))))
5625, 55mpbird 247 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140   class class class wbr 4805  cfv 6050  (class class class)co 6815  Basecbs 16080  lecple 16171  occoc 16172  joincjn 17166  meetcmee 17167  Latclat 17267  OPcops 34981  OLcol 34983  Atomscatm 35072  HLchlt 35159  LHypclh 35792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-1st 7335  df-2nd 7336  df-preset 17150  df-poset 17168  df-plt 17180  df-lub 17196  df-glb 17197  df-join 17198  df-meet 17199  df-p0 17261  df-p1 17262  df-lat 17268  df-clat 17330  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796
This theorem is referenced by:  cdleme30a  36187  trlcolem  36535
  Copyright terms: Public domain W3C validator