![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmat | Structured version Visualization version GIF version |
Description: An element covered by the lattice unit, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.) |
Ref | Expression |
---|---|
lhpmat.l | ⊢ ≤ = (le‘𝐾) |
lhpmat.m | ⊢ ∧ = (meet‘𝐾) |
lhpmat.z | ⊢ 0 = (0.‘𝐾) |
lhpmat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpmat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpmat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 756 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
2 | hlatl 35169 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
3 | 2 | ad2antrr 705 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ AtLat) |
4 | simprl 754 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
5 | eqid 2771 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | lhpmat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | 5, 6 | lhpbase 35806 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
8 | 7 | ad2antlr 706 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
9 | lhpmat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
10 | lhpmat.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
11 | lhpmat.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
12 | lhpmat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
13 | 5, 9, 10, 11, 12 | atnle 35126 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑊 ∈ (Base‘𝐾)) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
14 | 3, 4, 8, 13 | syl3anc 1476 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
15 | 1, 14 | mpbid 222 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 lecple 16156 meetcmee 17153 0.cp0 17245 Atomscatm 35072 AtLatcal 35073 HLchlt 35159 LHypclh 35792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-lat 17254 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-lhyp 35796 |
This theorem is referenced by: lhpmatb 35839 lhp2at0 35840 lhpelim 35845 lhple 35850 idltrn 35958 ltrnmw 35959 trl0 35979 cdleme0e 36026 cdleme2 36037 cdleme7c 36054 cdleme22d 36152 cdlemefrs29pre00 36204 cdlemefrs29bpre0 36205 cdlemefrs29cpre1 36207 cdleme32fva 36246 cdleme35d 36261 cdleme42ke 36294 cdlemeg46frv 36334 cdleme50trn3 36362 cdlemg2fv2 36409 cdlemg8a 36436 cdlemg10bALTN 36445 cdlemh2 36625 cdlemk9 36648 cdlemk9bN 36649 dia2dimlem1 36874 dihvalcqat 37049 dihjatc1 37121 |
Copyright terms: Public domain | W3C validator |