Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmat Structured version   Visualization version   GIF version

Theorem lhpmat 35838
Description: An element covered by the lattice unit, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
lhpmat.l = (le‘𝐾)
lhpmat.m = (meet‘𝐾)
lhpmat.z 0 = (0.‘𝐾)
lhpmat.a 𝐴 = (Atoms‘𝐾)
lhpmat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )

Proof of Theorem lhpmat
StepHypRef Expression
1 simprr 756 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
2 hlatl 35169 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
32ad2antrr 705 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ AtLat)
4 simprl 754 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
5 eqid 2771 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
6 lhpmat.h . . . . 5 𝐻 = (LHyp‘𝐾)
75, 6lhpbase 35806 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
87ad2antlr 706 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
9 lhpmat.l . . . 4 = (le‘𝐾)
10 lhpmat.m . . . 4 = (meet‘𝐾)
11 lhpmat.z . . . 4 0 = (0.‘𝐾)
12 lhpmat.a . . . 4 𝐴 = (Atoms‘𝐾)
135, 9, 10, 11, 12atnle 35126 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑊 ∈ (Base‘𝐾)) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
143, 4, 8, 13syl3anc 1476 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
151, 14mpbid 222 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  (class class class)co 6793  Basecbs 16064  lecple 16156  meetcmee 17153  0.cp0 17245  Atomscatm 35072  AtLatcal 35073  HLchlt 35159  LHypclh 35792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-lhyp 35796
This theorem is referenced by:  lhpmatb  35839  lhp2at0  35840  lhpelim  35845  lhple  35850  idltrn  35958  ltrnmw  35959  trl0  35979  cdleme0e  36026  cdleme2  36037  cdleme7c  36054  cdleme22d  36152  cdlemefrs29pre00  36204  cdlemefrs29bpre0  36205  cdlemefrs29cpre1  36207  cdleme32fva  36246  cdleme35d  36261  cdleme42ke  36294  cdlemeg46frv  36334  cdleme50trn3  36362  cdlemg2fv2  36409  cdlemg8a  36436  cdlemg10bALTN  36445  cdlemh2  36625  cdlemk9  36648  cdlemk9bN  36649  dia2dimlem1  36874  dihvalcqat  37049  dihjatc1  37121
  Copyright terms: Public domain W3C validator