Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhple Structured version   Visualization version   GIF version

Theorem lhple 35851
Description: Property of a lattice element under a co-atom. (Contributed by NM, 28-Feb-2014.)
Hypotheses
Ref Expression
lhple.b 𝐵 = (Base‘𝐾)
lhple.l = (le‘𝐾)
lhple.j = (join‘𝐾)
lhple.m = (meet‘𝐾)
lhple.a 𝐴 = (Atoms‘𝐾)
lhple.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhple (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑃 𝑋) 𝑊) = 𝑋)

Proof of Theorem lhple
StepHypRef Expression
1 simp1l 1239 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → 𝐾 ∈ HL)
21hllatd 35173 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → 𝐾 ∈ Lat)
3 simp2l 1241 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑃𝐴)
4 lhple.b . . . . . 6 𝐵 = (Base‘𝐾)
5 lhple.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atbase 35098 . . . . 5 (𝑃𝐴𝑃𝐵)
73, 6syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑃𝐵)
8 simp3l 1243 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑋𝐵)
9 lhple.j . . . . 5 = (join‘𝐾)
104, 9latjcom 17267 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) = (𝑋 𝑃))
112, 7, 8, 10syl3anc 1476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑃 𝑋) = (𝑋 𝑃))
1211oveq1d 6811 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑃 𝑋) 𝑊) = ((𝑋 𝑃) 𝑊))
13 simp1 1130 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 simp3r 1244 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑋 𝑊)
15 lhple.l . . . 4 = (le‘𝐾)
16 lhple.m . . . 4 = (meet‘𝐾)
17 lhple.h . . . 4 𝐻 = (LHyp‘𝐾)
184, 15, 9, 16, 17lhpmod6i1 35848 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑃𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑃 𝑊)) = ((𝑋 𝑃) 𝑊))
1913, 8, 7, 14, 18syl121anc 1481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑋 (𝑃 𝑊)) = ((𝑋 𝑃) 𝑊))
20 eqid 2771 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
2115, 16, 20, 5, 17lhpmat 35839 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
22213adant3 1126 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
2322oveq2d 6812 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑋 (𝑃 𝑊)) = (𝑋 (0.‘𝐾)))
24 hlol 35170 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
251, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → 𝐾 ∈ OL)
264, 9, 20olj01 35034 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 (0.‘𝐾)) = 𝑋)
2725, 8, 26syl2anc 573 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑋 (0.‘𝐾)) = 𝑋)
2823, 27eqtrd 2805 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑋 (𝑃 𝑊)) = 𝑋)
2912, 19, 283eqtr2d 2811 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑃 𝑋) 𝑊) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4787  cfv 6030  (class class class)co 6796  Basecbs 16064  lecple 16156  joincjn 17152  meetcmee 17153  0.cp0 17245  Latclat 17253  OLcol 34983  Atomscatm 35072  HLchlt 35159  LHypclh 35793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-psubsp 35312  df-pmap 35313  df-padd 35605  df-lhyp 35797
This theorem is referenced by:  lhpat4N  35853  cdlemn2  37005  dihord5apre  37072
  Copyright terms: Public domain W3C validator