Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3lem Structured version   Visualization version   GIF version

Theorem lhpexle3lem 35820
Description: There exists atom under a co-atom different from any 3 other atoms. TODO: study if adant*,simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle3lem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝   𝑍,𝑝

Proof of Theorem lhpexle3lem
StepHypRef Expression
1 simpl1 1227 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 lhpex1.l . . . . 5 = (le‘𝐾)
3 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle2 35819 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
61, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
7 simp31 1251 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝 𝑊)
8 simp32 1252 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑋)
9 simp1r 1240 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑋 = 𝑌)
108, 9neeqtrd 3012 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑌)
11 simp33 1253 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑍)
128, 10, 113jca 1122 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → (𝑝𝑋𝑝𝑌𝑝𝑍))
137, 12jca 501 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
14133exp 1112 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (𝑝𝐴 → ((𝑝 𝑊𝑝𝑋𝑝𝑍) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))))
1514reximdvai 3163 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍))))
166, 15mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
17 simprrr 767 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝 𝑊)
18 simp11l 1368 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL)
1918adantr 466 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝐾 ∈ HL)
2019hllatd 35173 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝐾 ∈ Lat)
21 eqid 2771 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2221, 3atbase 35098 . . . . . . . . 9 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
2322ad2antrl 707 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝 ∈ (Base‘𝐾))
24 simp121 1389 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝐴)
2524adantr 466 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑋𝐴)
2621, 3atbase 35098 . . . . . . . . 9 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑋 ∈ (Base‘𝐾))
28 simp122 1390 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌𝐴)
2928adantr 466 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑌𝐴)
3021, 3atbase 35098 . . . . . . . . 9 (𝑌𝐴𝑌 ∈ (Base‘𝐾))
3129, 30syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑌 ∈ (Base‘𝐾))
32 simprrl 766 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → ¬ 𝑝 (𝑋(join‘𝐾)𝑌))
33 eqid 2771 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
3421, 2, 33latnlej1l 17277 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑋)
3520, 23, 27, 31, 32, 34syl131anc 1489 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑋)
3621, 2, 33latnlej1r 17278 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑌)
3720, 23, 27, 31, 32, 36syl131anc 1489 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑌)
38 simpl3 1231 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑍 (𝑋(join‘𝐾)𝑌))
39 nbrne2 4807 . . . . . . . . 9 ((𝑍 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑍𝑝)
4039necomd 2998 . . . . . . . 8 ((𝑍 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑍)
4138, 32, 40syl2anc 573 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑍)
4235, 37, 413jca 1122 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → (𝑝𝑋𝑝𝑌𝑝𝑍))
4317, 42jca 501 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
44 simp11 1245 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
45 simp131 1392 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋 𝑊)
46 simp132 1393 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌 𝑊)
47 eqid 2771 . . . . . . . 8 (lt‘𝐾) = (lt‘𝐾)
482, 47, 33, 3, 4lhp2lt 35810 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊)
4944, 24, 45, 28, 46, 48syl122anc 1485 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊)
5021, 33, 3hlatjcl 35176 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
5118, 24, 28, 50syl3anc 1476 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
52 simp11r 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊𝐻)
5321, 4lhpbase 35807 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5452, 53syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊 ∈ (Base‘𝐾))
5521, 2, 47, 3hlrelat1 35209 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊)))
5618, 51, 54, 55syl3anc 1476 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊)))
5749, 56mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))
5843, 57reximddv 3166 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
59583expa 1111 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) ∧ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
60 simp11l 1368 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL)
6160adantr 466 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ HL)
6261hllatd 35173 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ Lat)
6322ad2antrl 707 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ (Base‘𝐾))
64 simp121 1389 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝐴)
6564adantr 466 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋𝐴)
66 simp122 1390 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌𝐴)
6766adantr 466 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌𝐴)
6861, 65, 67, 50syl3anc 1476 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
69 simp11r 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊𝐻)
7069adantr 466 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊𝐻)
7170, 53syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ (Base‘𝐾))
72 simprr3 1276 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 (𝑋(join‘𝐾)𝑌))
73 simp131 1392 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋 𝑊)
7473adantr 466 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 𝑊)
75 simp132 1393 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌 𝑊)
7675adantr 466 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 𝑊)
7765, 26syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ (Base‘𝐾))
7867, 30syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ (Base‘𝐾))
7921, 2, 33latjle12 17270 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
8062, 77, 78, 71, 79syl13anc 1478 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
8174, 76, 80mpbi2and 691 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) 𝑊)
8221, 2, 62, 63, 68, 71, 72, 81lattrd 17266 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 𝑊)
83 simprr1 1272 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑋)
84 simprr2 1274 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑌)
85 simpl3 1231 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ¬ 𝑍 (𝑋(join‘𝐾)𝑌))
86 nbrne2 4807 . . . . . . . 8 ((𝑝 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑍)
8772, 85, 86syl2anc 573 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑍)
8883, 84, 873jca 1122 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝𝑋𝑝𝑌𝑝𝑍))
8982, 88jca 501 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
90 simp2 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝑌)
912, 33, 3hlsupr 35195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
9260, 64, 66, 90, 91syl31anc 1479 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
9389, 92reximddv 3166 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
94933expa 1111 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
9559, 94pm2.61dan 814 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
9616, 95pm2.61dane 3030 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062   class class class wbr 4787  cfv 6030  (class class class)co 6796  Basecbs 16064  lecple 16156  ltcplt 17149  joincjn 17152  Latclat 17253  Atomscatm 35072  HLchlt 35159  LHypclh 35793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-lhyp 35797
This theorem is referenced by:  lhpexle3  35821
  Copyright terms: Public domain W3C validator